Pulsational pair instability as an explanation for the most luminous supernovae

Abstract

The extremely luminous supernova SN 2006gy (ref. 1) challenges the traditional view that the collapse of a stellar core is the only mechanism by which a massive star makes a supernova, because it seems too luminous by more than a factor of ten. Here we report that the brightest supernovae in the modern Universe arise from collisions between shells of matter ejected by massive stars that undergo an interior instability arising from the production of electron–positron pairs2. This ‘pair instability’ leads to explosive burning that is insufficient to unbind the star, but ejects many solar masses of the envelope. After the first explosion, the remaining core contracts and searches for a stable burning state. When the next explosion occurs, several solar masses of material are again ejected, which collide with the earlier ejecta. This collision can radiate 1050 erg of light, about a factor of ten more than an ordinary supernova. Our model is in good agreement with the observed light curve for SN 2006gy and also shows that some massive stars can produce more than one supernova-like outburst.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Velocity structure following the second eruption of a 110-solar-mass pulsational pair-instability supernova.
Figure 2: Cumulative light curve for the 110-solar-mass model.
Figure 3: Absolute R-band magnitudes resulting from the strong second explosion of the 110-solar-mass model.

References

  1. 1

    Smith, N. et al. SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like Eta Carinae. Astrophys. J. 666, 1116–1128 (2007)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Barkat, Z., Rakavy, G. & Sack, N. Dynamics of supernova explosions resulting from pair formation. Phys. Rev. Lett. 18, 379–381 (1967)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Woosley, S. E., Heger, A. & Weaver, T. A. The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015–1071 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Figer, D. F. An upper limit to the masses of stars. Nature 434, 192–194 (2005)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Vink, J. S. & de Koter, A. Predictions of variable mass loss for Luminous Blue Variables. Astron. Astrophys. 393, 543–553 (2002)

    ADS  Article  Google Scholar 

  6. 6

    Smith, N. & Owocki, S. P. On the role of continuum-driven eruptions in the evolution of very massive stars and population III stars. Astrophys. J. Lett. 645, L45–L48 (2006)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Smith, N. Eruptive mass loss in very massive stars and population III stars. In Massive Stars: From Pop III and GRBs to the Milky Way (in the press); preprint at 〈http://arxiv.org/abs/astro-ph/0607457v2〉 (2006)

    Google Scholar 

  8. 8

    Vink, J. S. & de Koter, A. On the metallicity dependence of Wolf-Rayet wind. Astron. Astrophys. 442, 587–596 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kudritzki, R. P. Line-driven winds, ionizing fluxes, and ultraviolet spectra of hot stars at extremely low metallicity. I. Very massive O stars. Astrophys. J. 577, 389–408 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Woosley, S. E. & Weaver, T. A. In Radiation Hydrodynamics in Stars and Compact Objects (eds Mihalas, D. & Winkler, K.-H. A.) Lecture Notes Phys.. 255, 91–120 (1986)

    Google Scholar 

  11. 11

    Heger, A. & Woosley, S. E. The nucleosynthetic signature of population III. Astrophys. J. 567, 532–543 (2002)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Woosley, S. E. & Weaver, T. A. In Supernovae: A Survey of Current Resarch (eds Rees, M. J. & Stoneham, R. J.) NATO Advanced Study Inst. Ser. 90, 79–99 (1982)

    Google Scholar 

  13. 13

    Bond, J. R., Arnett, W. D. & Carr, B. The evolution and fate of very massive objects. Astrophys. J. 280, 825–847 (1984)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Weaver, T. A., Zimmerman, G. B. & Woosley, S. E. Presupernova evolution of massive stars. Astrophys. J. 225, 1021–1029 (1978)

    ADS  CAS  Article  Google Scholar 

  15. 15

    de Jager, C., Nieuwenhuijzen, H. & van der Hucht, K. A. Mass loss rates in the Hertzsprung-Russell diagram. Astron. Astrophys. 72 (Suppl.). 259–289 (1988)

    ADS  Google Scholar 

  16. 16

    Nieuwenhuijzen, H. & de Jager, C. Parametrization of stellar rates of mass loss as functions of the fundamental stellar parameters M, L, and R. Astron. Astrophys. 231, 134–136 (1990)

    ADS  Google Scholar 

  17. 17

    Grasberg, E. K. & Nadyozhin, D. K. Type-II supernovae—two successive explosions. Sov. Astron. Lett. 12, 68–70 (1986)

    ADS  Google Scholar 

  18. 18

    Blinnikov, S. I. et al. Theoretical light curves for deflagration models of type Ia supernova. Astron. Astrophys. 453, 229–240 (2006)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Chugai, N. N. et al. Type IIn supernova 1994W: evidence for the explosive ejection of a circumstellar envelope. Mon. Not. R. Astron. Soc. 352, 1213–1231 (2004)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Ofek, E. O. et al. SN 2006gy: An extremely luminous supernova in the galaxy NGC 1260. Astrophys. J. Lett. 659, L13–L16 (2007)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Scannapieco, E., Madau, P., Woosley, S. E., Heger, A. & Ferrara, A. The detectability of pair-production supernovae at z < 6. Astrophys. J. 633, 1031–1041 (2005)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Nomoto, K., Tominaga, N., Tanaka, M., Maeda, K. & Umeda, H. Nucleosynthesis in core-collapse supernovae and GRB-metal-poor star connection. In Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters (eds Immler, S., Weiler, K. & McCray, R.) (American Institute of Physics, in the press); preprint at 〈http://arxiv.org/abs/0707.2187〉 (2007)

    Google Scholar 

  23. 23

    Umeda, H. & Nomoto, K. How much 56Ni can be produced in core-collapse supernovae? Evolution and explosion of 30–100 solar mass stars. Astrophys. J. (submitted); preprint at 〈http://arxiv.org/astro-ph07072598〉 (2007)

  24. 24

    Heger, A., Woosley, S. E. & Spruit, H. Presupernova evolution ofdifferentially rotating massive stars including magnetic fields. Astrophys. J. 626, 350–363 (2005)

    ADS  Article  Google Scholar 

  25. 25

    Duncan, R. C. & Thompson, C. Formation of very strongly magnetized neutron stars—Implications for gamma-ray bursts. Astrophys. J. 392, L9–L13 (1992)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Usov, V. V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature 357, 472–474 (1992)

    ADS  Article  Google Scholar 

  28. 28

    MacFadyen, A. I. & Woosley, S. E. Collapsars: gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262–289 (1999)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Van Dyk, S. D., Filippenko, A. V., Chornock, R., Li, W. & Challis, P. M. Supernova 1954J (variable 12) in NGC 2403 unmasked. Publ. Astron. Soc. Pacif. 117, 553–562 (2005)

    ADS  Article  Google Scholar 

  30. 30

    Foley, R. J. et al. 2006jc: a Wolf-Rayet star exploding in a dense He-rich circumstellar medium. Astrophys. J. 657, L105–L108 (2007)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Chevalier, R. A. & Blondin, J. M. Hydrodynamic instabilities in supernova remnants: early radiative cooling. Astrophys. J. 444, 312–317 (1995)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Discovery through Advanced Computing (SciDAC) Program of the US Department of Energy, by NASA, and by the Russian Foundation for Basic Research and Science Schools. At Los Alamos, this work was carried out under the auspices of the National Nuclear Security Administration of the US Department of Energy.

Author Contributions S.E.W. and A.H. proposed that the light curves of pulsational pair-instability supernovae might have a large range in luminosity including exceptionally brilliant supernovae. They carried out the calculations of stellar evolution and explosion. S.B. provided expertise in the physics of supernovae with circumstellar interaction and calculated all the light curves from the models except those done with Kepler.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. E. Woosley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1 – S12 with Legends and Supplementary Table 1. The figures show the evolution of the composition through the two outbursts, the bolometric light curve of the two bursts, the multicolor photometry of models in which the density and explosion energy are varied, and other details of the emission. The table presents a summary of results for other similar mass stars with highly variable explosion properties. (PDF 333 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woosley, S., Blinnikov, S. & Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450, 390–392 (2007). https://doi.org/10.1038/nature06333

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing