Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars


Resolving early silicate differentiation timescales is crucial for understanding the chemical evolution and thermal histories of terrestrial planets1. Planetary-scale magma oceans are thought to have formed during early stages of differentiation, but the longevity of such magma oceans is poorly constrained. In Mars, the absence of vigorous convection and plate tectonics has limited the scale of compositional mixing within its interior2, thus preserving the early stages of planetary differentiation. The SNC (Shergotty–Nakhla–Chassigny) meteorites from Mars retain ‘memory’ of these events3,4,5. Here we apply the short-lived 146Sm–142Nd and the long-lived 147Sm–143Nd chronometers to a suite of shergottites to unravel the history of early silicate differentiation in Mars. Our data are best explained by progressive crystallization of a magma ocean with a duration of 100 million years after core formation. This prolonged solidification requires the existence of a primitive thick atmosphere on Mars that reduces the cooling rate of the interior6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ε 142 Nd measured for martian meteorites in this study.
Figure 2: A two-stage coupled 142 Nd– 143 Nd evolution model for a chondritic martian magma ocean projected to 150 Myr ago.
Figure 3: The 147 Sm/ 144 Nd time-integrated ratios for mantle sources versus the measured ratios in lavas.

Similar content being viewed by others


  1. Elkins-Tanton, L. T., Hess, P. C. & Parmentier, E. M. Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. 110 E12S01 doi: 10.1029/2005JE002480 (2005)

    Article  ADS  Google Scholar 

  2. Kiefer, W. S. Melting in the martian mantle: Shergottite formation and implications for present-day mantle convection on Mars. Meteorit. Planet. Sci. 38, 1815–1832 (2003)

    Article  ADS  CAS  Google Scholar 

  3. Harper, C. L., Nyquist, L. E., Bansal, B., Wiesmann, H. & Shih, C.-Y. Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in SNC meteorites. Science 267, 213–217 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Borg, L. E. & Draper, D. S. A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites. Meteorit. Planet. Sci. 38, 1713–1731 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Foley, N. C. et al. The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005)

    Article  ADS  CAS  Google Scholar 

  6. Abe, Y. Thermal and chemical evolution of the terrestrial magma ocean. Phys. Earth Planet. Inter. 100, 27–39 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Kleine, T., Mezger, K., Münker, C., Palme, H. & Bischoff, A. 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 68, 2935–2946 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Lee, D.-C. & Halliday, A. N. Core formation on Mars and differentiated asteroids. Nature 388, 854–857 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Tonks, W. B. & Melosh, H. J. in Origin of the Earth (eds Newsom, N. E. & Jones, J. H.) 151–174 (Oxford Univ. Press, New York, 1990)

    Google Scholar 

  10. Borg, L. E., Nyquist, L. E., Taylor, L. A., Wiesmann, H. & Shih, C.-Y. Constraints on martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta 61, 4915–4931 (1997)

    Article  ADS  CAS  Google Scholar 

  11. Jagoutz, E., Jotter, R. & Dreibus, G. Evolution of six SNC meteorites with anomalous neodymium-142. Meteorit. Planet. Sci. 35 (Suppl.), abstr. A83. (2000)

  12. Borg, L. E., Nyquist, L. E., Wiesmann, H., Shih, C.-Y. & Reese, Y. The age of Dar al Gani 476 and the differentiation history of the martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta 67, 3519–3536 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Jagoutz, E., Dreibus, G. & Jotter, R. New 142Nd data on SNC meteorites. Geochim. Cosmochim. Acta 67 (Suppl. 1). A184 (2003)

    ADS  Google Scholar 

  14. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Andreasen, R. & Sharma, M. Solar nebula heterogeneity in p-process samarium and neodymium isotopes. Science 314, 806–809 (2006)

    Article  ADS  CAS  Google Scholar 

  16. Boyet, M. & Carlson, R. W. A new geochemical model for the Earth's mantle inferred from 146Sm-142Nd systematics. Earth Planet. Sci. Lett. 250, 254–268 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Rehkämper, M., Gärtner, M., Galer, S. J. G. & Goldstein, S. L. Separation of Ce from other rare-earth elements with application to Sm-Nd and La-Ce chronometry. Chem. Geol. 129, 201–208 (1996)

    Article  ADS  Google Scholar 

  18. Shih, C.-Y. et al. Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALHA 77005: late magmatism on a geologically active planet. Geochim. Cosmochim. Acta 46, 2323–2344 (1982)

    Article  ADS  CAS  Google Scholar 

  19. Jones, J. H. Isotopic relationships among the shergottites, the nakhlites and Chassigny. Proc. Lunar Planet. Sci. Conf. 19, 465–474 (1989)

    ADS  Google Scholar 

  20. Borg, L. E., Nyquist, L. E., Wiesmann, H. & Reese, Y. Constraints on the petrogenesis of martian meteorites from the Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottites ALHA77005 and LEW88516. Geochim. Cosmochim. Acta 66, 2037–2053 (2002)

    Article  ADS  CAS  Google Scholar 

  21. Longhi, J. Complex magmatic processes on Mars: inferences from SNC meteorites. Proc. Lunar Planet. Sci. Conf. 21, 695–709 (1991)

    ADS  Google Scholar 

  22. Blichert-Toft, J., Gleason, J. D., Telouk, P. & Albarède, F. The Lu-Hf isotope geochemistry of shergottites and the evolution of the martian mantle-crust system. Earth Planet. Sci. Lett. 173, 25–39 (1999)

    Article  ADS  CAS  Google Scholar 

  23. Brandon, A. D., Walker, R. J., Morgan, J. W. & Goles, G. G. Re-Os isotopic evidence for early differentiation of the martian mantle. Geochim. Cosmochim. Acta 64, 4083–4095 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Shih, C.-Y., Nyquist, L. E., Wiesmann, H. & Barrat, J.-A. Age and petrogenesis of picritic shergottite NWA 1068: Sm-Nd and Rb-Sr isotopic studies. Lunar Planet. Sci. 34, abstr. 1439. (2003)

  25. Warren, P. H. & Wasson, J. T. The origin of KREEP. Rev. Geophys. Space Phys. 17, 73–88 (1979)

    Article  ADS  CAS  Google Scholar 

  26. Zhang, M. H. G., Luhmann, J. G., Bougher, S. W. & Nagy, A. F. The ancient oxygen exosphere of Mars: implications for atmosphere evolution. J. Geophys. Res. 98, 10915–10923 (1993)

    Article  ADS  CAS  Google Scholar 

  27. Caro, G., Bourdon, B., Birck, J.-L. & Moorbath, S. High-precision 142Nd/144Nd measurements in terrestrial rocks: constraints on the early differentiation of the Earth's mantle. Geochim. Cosmochim. Acta 70, 164–191 (2006)

    Article  ADS  CAS  Google Scholar 

  28. Nyquist, L. E. et al. Ages and geologic histories of martian meteorites. Space Sci. Rev. 96, 105–164 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Brandon, A. D., Nyquist, L. E., Shih, C.-Y. & Wiesmann, H. Rb-Sr and Sm-Nd isotopic systematics of shergottite NWA 856: crystallization age and implications for alteration of hot desert SNC meteorites. Lunar Planet. Sci. 35, abstr. 1931 [CD-ROM]. (2004)

  30. Shih, C.-Y., Nyquist, L. E. & Reese, Y. Rb-Sr and Sm-Nd isotopic studies of martian depleted shergottites SaU094/005. Lunar Planet. Sci. 38, abstr. 1745 [CD-ROM]. (2007)

  31. Jagoutz, E. & Wänke, H. and Nd isotopic systematics of Shergotty meteorite. Geochim. Cosmochim. Acta 50, 939–953 (1986)

    Article  ADS  CAS  Google Scholar 

  32. Bouvier, A., Blichert-Toft, J., Vervoort, J. D. & Albarède, F. The age of SNC meteorites and the antiquity of the martian surface. Earth Planet. Sci. Lett. 240, 221–233 (2005)

    Article  ADS  CAS  Google Scholar 

Download references


We thank D. Draper for a review. We thank the Smithsonian Institution, the American Museum of Natural History, the Natural History Museum in Bern, Switzerland, and the NASA Antarctic Meteorite Collection for providing samples for this study. We also thank Y. Reese and C.-Y. Shih for their analytical support and K. Rankenburg for his help. This work was supported by the Lunar and Planetary Institute, NASA Cosmochemistry and Origins of Solar Systems grants.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. Debaille.

Supplementary information

Supplementary Information

The file contains Supplementary Methods and the Supplementary Figure 1 showing the reproducibility and precision of 142 Nd measurements. It includes discussions about neutron capture effects and terrestrial contamination issues in Martian meteorites presented in this study, and additional explanations for the two-stage partial melting model as represented in the Supplementary Figure 2. It also contains the Supplementary Table 1 presenting all data set used in the text and Figures 1-3, and the Supplementary Table 2 including all the Nd isotopic compositions measured in this study. (PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debaille, V., Brandon, A., Yin, Q. et al. Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450, 525–528 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing