Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system


Cavity quantum electrodynamics1, the study of coherent quantum interactions between the electromagnetic field and matter inside a resonator, has received attention as both a test bed for ideas in quantum mechanics and a building block for applications in the field of quantum information processing2. The canonical experimental system studied in the optical domain is a single alkali atom coupled to a high-finesse Fabry–Perot cavity. Progress made in this system1,2,3,4,5 has recently been complemented by research involving trapped ions6, chip-based microtoroid cavities7, integrated microcavity-atom-chips8, nanocrystalline quantum dots coupled to microsphere cavities9, and semiconductor quantum dots embedded in micropillars, photonic crystals and microdisks10,11,12. The last system has been of particular interest owing to its relative simplicity and scalability. Here we use a fibre taper waveguide to perform direct optical spectroscopy of a system consisting of a quantum dot embedded in a microdisk. In contrast to earlier work with semiconductor systems, which has focused on photoluminescence measurements10,11,12,13,14, we excite the system through the photonic (light) channel rather than the excitonic (matter) channel. Strong coupling, the regime of coherent quantum interactions, is demonstrated through observation of vacuum Rabi splitting in the transmitted and reflected signals from the cavity. The fibre coupling method also allows us to examine the system’s steady-state nonlinear properties, where we see a saturation of the cavity–quantum dot response for less than one intracavity photon. The excitation of the cavity–quantum dot system through a fibre optic waveguide is central to applications such as high-efficiency single photon sources15,16, and to more fundamental studies of the quantum character of the system17.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental apparatus and the cavity–quantum dot system.
Figure 2: Reflection and transmission spectra from a strongly coupled microdisk–quantum dot system.
Figure 3: Power dependence of the quantum dot–microcavity system.


  1. Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scripta T 76, 127–137 (1998)

    Article  ADS  Google Scholar 

  2. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Hood, C. J., Chapman, M. S., Lynn, T. W. & Kimble, H. J. Real-time cavity QED with single atoms. Phys. Rev. Lett. 80, 4157–4160 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Hennrich, M., Legero, T., Kuhn, A. & Rempe, G. Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity. Phys. Rev. Lett. 85, 4872–4875 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Boca, A. et al. Observation of the vacuum Rabi spectrum for one trapped atom. Phys. Rev. Lett. 93, 233603 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Keller, M., Lange, B., Hayaska, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 443, 671–674 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Colombe, Y. et al. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Preprint at 〈〉 (2007)

  9. Park, Y.-S., Cook, A. K. & Wang, H. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Peter, E. et al. Exciton photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Santori, C., Fattal, D., Vuckovic, J., Solomon, G. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Knight, J. C., Cheung, G., Jacques, F. & Birks, T. A. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett. 22, 1129–1131 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Srinivasan, K., Barclay, P. E., Borselli, M. & Painter, O. Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity. Phys. Rev. B 70, 081306R (2004)

    Article  ADS  Google Scholar 

  21. Srinivasan, K. et al. Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots. Appl. Phys. Lett. 86, 151106 (2005)

    Article  ADS  Google Scholar 

  22. Srinivasan, K. & Painter, O. Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures. Appl. Phys. Lett. 90, 031114 (2007)

    Article  ADS  Google Scholar 

  23. Liu, G. T. et al. The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures. IEEE J. Quant. Electron. 36, 1272–1279 (2000)

    Article  ADS  CAS  Google Scholar 

  24. Srinivasan, K., Painter, O., Stintz, A. & Krishna, S. Single quantum dot spectroscopy using a fiber taper waveguide near-field optic. Appl. Phys. Lett. 91, 091102 (2007)

    Article  ADS  Google Scholar 

  25. Badolato, A. et al. Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Kulakovski, V. D. et al. Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots. Phys. Rev. Lett. 82, 1780–1783 (1999)

    Article  ADS  Google Scholar 

  27. Mosor, S. et al. Scanning a photonic crystal slab nanocavity by condensation of xenon. Appl. Phys. Lett. 87, 141105 (2005)

    Article  ADS  Google Scholar 

  28. Srinivasan, K. & Painter, O. Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A 75, 023814 (2007)

    Article  ADS  Google Scholar 

  29. Savage, C. M. & Carmichael, H. J. Single-atom optical bistability. IEEE J. Quant. Electron. 24, 1495–1498 (1988)

    Article  ADS  CAS  Google Scholar 

  30. Santori, C. et al. Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006)

    Article  ADS  PubMed  Google Scholar 

Download references


We thank S. Krishna and A. Stintz for providing quantum dot material growth. This work was supported by the Charles L. Powell Foundation and the Center for the Physics of Information at Caltech.

Author Contributions Both K.S. and O.P. contributed to all aspects of this work.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Oskar Painter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srinivasan, K., Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature 450, 862–865 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing