Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes


JHDM1B is an evolutionarily conserved and ubiquitously expressed member of the JHDM (JmjC-domain-containing histone demethylase) family1,2,3. Because it contains an F-box motif, this protein is also known as FBXL10 (ref. 4). With the use of a genome-wide RNAi screen, the JHDM1B worm orthologue (T26A5.5) was identified as a gene that regulates growth5. In the mouse, four independent screens have identified JHDM1B as a putative tumour suppressor by retroviral insertion analysis6,7,8,9. Here we identify human JHDM1B as a nucleolar protein and show that JHDM1B preferentially binds the transcribed region of ribosomal DNA to repress the transcription of ribosomal RNA genes. We also show that repression of ribosomal RNA genes by JHDM1B is dependent on its JmjC domain, which is necessary for the specific demethylation of trimethylated lysine 4 on histone H3 in the nucleolus. In agreement with the notion that ribosomal RNA synthesis and cell growth are coupled processes, we show a JmjC-domain-dependent negative effect of JHDM1B on cell size and cell proliferation. Because aberrant ribosome biogenesis and the disruption of epigenetic control mechanisms contribute to cellular transformation, these results, together with the low levels of JHDM1B expression found in aggressive brain tumours, suggest a role for JHDM1B in cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: JHDM1B localizes to the nucleolus and associates with rDNA.
Figure 2: JHDM1B represses transcription of rRNA genes via the JmjC domain.
Figure 3: JHDM1B demethylates H3K4me3 on the rDNA locus.
Figure 4: JHDM1B inhibits cell growth and proliferation.

Similar content being viewed by others


  1. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Klose, R. J., Kallin, E. M. & Zhang, Y. JmjC-domain-containing proteins and histone demethylation. Nature Rev. Genet. 7, 715–727 (2006)

    Article  CAS  PubMed  Google Scholar 

  3. Shi, Y. & Whetstine, J. R. Dynamic regulation of histone lysine methylation by demethylases. Mol. Cell 25, 1–14 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Jin, J. et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18, 2573–2580 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pothof, J. et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev. 17, 443–448 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, J. et al. Leukaemia disease genes: large-scale cloning and pathway predictions. Nature Genet. 23, 348–353 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki, T. et al. New genes involved in cancer identified by retroviral tagging. Nature Genet. 32, 166–174 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki, T., Minehata, K., Akagi, K., Jenkins, N. A. & Copeland, N. G. Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. EMBO J. 25, 3422–3431 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hwang, H. C. et al. Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis. Proc. Natl Acad. Sci. USA 99, 11293–11298 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dousset, T. et al. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Mol. Biol. Cell 11, 2705–2717 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Daniely, Y., Dimitrova, D. D. & Borowiec, J. A. Stress-dependent nucleolin mobilization mediated by p53–nucleolin complex formation. Mol. Cell. Biol. 22, 6014–6022 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. Voo, K. S., Carlone, D. L., Jacobsen, B. M., Flodin, A. & Skalnik, D. G. Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol. Cell. Biol. 20, 2108–2121 (2000)

    Article  CAS  PubMed  Google Scholar 

  14. Koyama-Nasu, R., David, G. & Tanese, N. The F-box protein Fbl10 is a novel transcriptional repressor of c-Jun. Nature Cell Biol. 9, 1074–1080 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. Brock, G. J. & Bird, A. Mosaic methylation of the repeat unit of the human ribosomal RNA genes. Hum. Mol. Genet. 6, 451–456 (1997)

    Article  CAS  PubMed  Google Scholar 

  16. Earley, K. et al. Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev. 20, 1283–1293 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Preuss, S. & Pikaard, C. S. rRNA gene silencing and nucleolar dominance: Insights into a chromosome-scale epigenetic on/off switch. Biochim. Biophys. Acta. 1769, 383–392 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003)

    Article  CAS  Google Scholar 

  19. Zhao, J., Yuan, X., Frodin, M. & Grummt, I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell 11, 405–413 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Bukhari, M. H., Hashmi, I., Naeem, S., Abro, A. K. & Chaudhry, N. A. Use of AgNOR index in grading and differential diagnosis of astrocytic lesions of brain. Pak. J. Med. Sci. 23, 206–210 (2007)

    Google Scholar 

  21. Bredel, M. et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res. 65, 8679–8689 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Freije, W. A. et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res. 64, 6503–6510 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467–471 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Amador, V., Ge, S., Santamaria, P. G., Guardavaccaro, D. & Pagano, M. APC/CCdc20 controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol. Cell 27, 462–473 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Bashir, T., Dorrello, N. V., Amador, V., Guardavaccaro, D. & Pagano, M. Control of the SCFSkp2-Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature 428, 190–193 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Leung, A. K. et al. Quantitative kinetic analysis of nucleolar breakdown and reassembly during mitosis in live human cells. J. Cell Biol. 166, 787–800 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005)

    Article  CAS  PubMed  Google Scholar 

  30. Cloos, P. A. et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Frescas, D., Mavrakis, M., Lorenz, H., Delotto, R. & Lippincott-Schwartz, J. The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J. Cell Biol. 173, 219–230 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank D. Reinberg, R. Santoro, J. Skaar and J. Wysocka for suggestions and/or critically reading the manuscript; L. Busino for helping with qRT–PCR analysis; and J. Wysocka and G. David for reagents. D.F. is grateful to A. Nans. M.P. is grateful to T. M. Thor for continuous support. This work was supported by an Emerald Foundation grant to D.G., a Fellowship from the American-Italian Cancer Foundation to D.G., a fellowship from the German Research Foundation to F.B., a Bernard B. Levine Foundation award to R.K.-N., and grants from the NIH to M.P.

Author Contributions D.F. performed all experiments, contributed to their planning and co-wrote the manuscript. D.G. contributed to the planning of experiments and discussing and interpreting results. F.B. conducted the fluorescence-activated cell sorting analysis. R.K.-N. generated JHDM1B mutants. M.P. coordinated the study and co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michele Pagano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S16 with Legends. (PDF 1590 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frescas, D., Guardavaccaro, D., Bassermann, F. et al. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450, 309–313 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing