Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An elaborate pathway required for Ras-mediated epigenetic silencing


The conversion of a normal cell to a cancer cell occurs in several steps and typically involves the activation of oncogenes and the inactivation of tumour suppressor and pro-apoptotic genes1. In many instances, inactivation of genes critical for cancer development occurs by epigenetic silencing, often involving hypermethylation of CpG-rich promoter regions2,3. It remains to be determined whether silencing occurs by random acquisition of epigenetic marks that confer a selective growth advantage or through a specific pathway initiated by an oncogene4,5,6. Here we perform a genome-wide RNA interference (RNAi) screen in K-ras-transformed NIH 3T3 cells and identify 28 genes required for Ras-mediated epigenetic silencing of the pro-apoptotic Fas gene. At least nine of these RESEs (Ras epigenetic silencing effectors), including the DNA methyltransferase DNMT1, are directly associated with specific regions of the Fas promoter in K-ras-transformed NIH 3T3 cells but not in untransformed NIH 3T3 cells. RNAi-mediated knockdown of any of the 28 RESEs results in failure to recruit DNMT1 to the Fas promoter, loss of Fas promoter hypermethylation, and derepression of Fas expression. Analysis of five other epigenetically repressed genes indicates that Ras directs the silencing of multiple unrelated genes through a largely common pathway. Last, we show that nine RESEs are required for anchorage-independent growth and tumorigenicity of K-ras-transformed NIH 3T3 cells; these nine genes have not previously been implicated in transformation by Ras. Our results show that Ras-mediated epigenetic silencing occurs through a specific, complex, pathway involving components that are required for maintenance of a fully transformed phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A genome-wide shRNA screen identifies factors required for Ras-mediated epigenetic silencing of Fas.
Figure 2: ChIP analysis and methylation status of the Fas promoter.
Figure 3: Ras directs epigenetic silencing of multiple, unrelated genes through a largely common pathway.

Similar content being viewed by others


  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  CAS  Google Scholar 

  2. Baylin, S. B. DNA methylation and gene silencing in cancer. Nature Clin. Pract. Oncol. 2 (Suppl. 1). S4–S11 (2005)

    Article  CAS  Google Scholar 

  3. Esteller, M. Epigenetics provides a new generation of oncogenes and tumour-suppressor genes. Br. J. Cancer 94, 179–183 (2006)

    Article  CAS  Google Scholar 

  4. Jones, P. A. DNA methylation errors and cancer. Cancer Res. 56, 2463–2467 (1996)

    CAS  PubMed  Google Scholar 

  5. Baylin, S. & Bestor, T. H. Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 1, 299–305 (2002)

    Article  CAS  Google Scholar 

  6. Keshet, I. et al. Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature Genet. 38, 149–153 (2006)

    Article  CAS  Google Scholar 

  7. Giehl, K. Oncogenic Ras in tumour progression and metastasis. Biol. Chem. 386, 193–205 (2005)

    CAS  PubMed  Google Scholar 

  8. Ehmann, F. et al. Detection of N-RAS and K-RAS in their active GTP-bound form in acute myeloid leukemia without activating RAS mutations. Leuk. Lymphoma 47, 1387–1391 (2006)

    Article  CAS  Google Scholar 

  9. Fenton, R. G., Hixon, J. A., Wright, P. W., Brooks, A. D. & Sayers, T. J. Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras. Cancer Res. 58, 3391–3400 (1998)

    CAS  PubMed  Google Scholar 

  10. Peli, J. et al. Oncogenic Ras inhibits Fas ligand-mediated apoptosis by downregulating the expression of Fas. EMBO J. 18, 1824–1831 (1999)

    Article  CAS  Google Scholar 

  11. Osaki, M., Oshimura, M. & Ito, H. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667–676 (2004)

    Article  CAS  Google Scholar 

  12. de Vries-Smits, A. M., Burgering, B. M., Leevers, S. J., Marshall, C. J. & Bos, J. L. Involvement of p21ras in activation of extracellular signal-regulated kinase 2. Nature 357, 602–604 (1992)

    Article  ADS  CAS  Google Scholar 

  13. Alfonso, P. et al. Proteomic analysis of p38α mitogen-activated protein kinase-regulated changes in membrane fractions of RAS-transformed fibroblasts. Proteomics 6 (Suppl 1). S262–S271 (2006)

    Article  Google Scholar 

  14. Ohm, J. E. et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nature Genet. 39, 237–242 (2007)

    Article  CAS  Google Scholar 

  15. Schlesinger, Y. et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nature Genet. 39, 232–236 (2007)

    Article  CAS  Google Scholar 

  16. Widschwendter, M. et al. Epigenetic stem cell signature in cancer. Nature Genet. 39, 157–158 (2007)

    Article  CAS  Google Scholar 

  17. Zhou, Y., Santoro, R. & Grummt, I. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J. 21, 4632–4640 (2002)

    Article  CAS  Google Scholar 

  18. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005)

    Article  CAS  Google Scholar 

  19. Rubin, J. S., Barshishat-Kupper, M., Feroze-Merzoug, F. & Xi, Z. F. Secreted WNT antagonists as tumor suppressors: pro and con. Front. Biosci. 11, 2093–2105 (2006)

    Article  CAS  Google Scholar 

  20. Ranganathan, P. & Rangnekar, V. M. Regulation of cancer cell survival by Par-4. Ann. NY Acad. Sci. 1059, 76–85 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Abdollahi, A. LOT1 (ZAC1/PLAGL1) and its family members: mechanisms and functions. J. Cell. Physiol. 210, 16–25 (2007)

    Article  CAS  Google Scholar 

  22. Nie, Y. et al. DNA hypermethylation is a mechanism for loss of expression of the HLA class I genes in human esophageal squamous cell carcinomas. Carcinogenesis 22, 1615–1623 (2001)

    Article  CAS  Google Scholar 

  23. Kenyon, K. et al. Lysyl oxidase and rrg messenger RNA. Science 253, 802 (1991)

    Article  ADS  CAS  Google Scholar 

  24. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992)

    Article  ADS  CAS  Google Scholar 

  25. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001)

    Article  CAS  Google Scholar 

Download references


We thank S. Evans for editorial assistance. C.G. is on leave from the CNRS, Paris, France. This work was funded in part by a grant from the NIH to M.R.G. M.R.G. is an investigator of the Howard Hughes Medical Institute.

Author Contributions S.G. and C.-M.V. prepared the retroviral library. C.G. and N.W. performed all experiments and data analyses. C.G., N.W. and M.R.G. designed the experiments, discussed the interpretation of the results and co-wrote the paper. All authors commented on the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael R. Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-12 and Supplementary Tables 1-2 with Legends; Supplementary Methods and additional references. The Supplementary Figures show several control experiments; confirm and extend the generality of Fas silencing and the involvement of RESEs to other mouse and human ras-transformed cell lines; show transcriptional or post-transcriptional upregulation of several RESEs by Ras; confirm the hypermethylated status of additional promoters; and show the requirement for several RESEs for a fully transformed phenotype. The Supplementary Tables provide shRNA and primer sequence information, as well as supplementary methods and references. (PDF 1823 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gazin, C., Wajapeyee, N., Gobeil, S. et al. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449, 1073–1077 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing