An ecological and evolutionary perspective on human–microbe mutualism and disease

Abstract

The microbial communities of humans are characteristic and complex mixtures of microorganisms that have co-evolved with their human hosts. The species that make up these communities vary between hosts as a result of restricted migration of microorganisms between hosts and strong ecological interactions within hosts, as well as host variability in terms of diet, genotype and colonization history. The shared evolutionary fate of humans and their symbiotic bacteria has selected for mutualistic interactions that are essential for human health, and ecological or genetic changes that uncouple this shared fate can result in disease. In this way, looking to ecological and evolutionary principles might provide new strategies for restoring and maintaining human health.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Site-specific distributions of bacterial phyla in healthy humans.
Figure 2: Patterns of human-associated microbial diversity.
Figure 3: Relationships between bacterial 16S rRNA gene sequences from the intestinal microbiota of animals.
Figure 4: Adaptive landscapes.

References

  1. 1

    Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I. & Dewhirst, F. E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Bik, E. M. et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103, 732–737 (2006).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4

    Gao, Z., Tseng, C. H., Pei, Z. & Blaser, M. J. Molecular analysis of human forearm superficial skin bacterial biota. Proc. Natl Acad. Sci. USA 104, 2927–2932 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  5. 5

    Pei, Z. et al. Bacterial biota in the human distal esophagus. Proc. Natl Acad. Sci. USA 101, 4250–4255 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  6. 6

    Verhelst, R. et al. Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol. 4, 16 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7

    Zhou, X. et al. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology 150, 2565–2573 (2004).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Lay, C. et al. Colonic microbiota signatures across five northern European countries. Appl. Environ. Microbiol. 71, 4153–4155 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T. & Tanaka, R. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl. Environ. Microbiol. 70, 7220–7228 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. 11

    Vanhoutte, T., Huys, G., De Brandt, E. & Swings, J. Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol. Ecol. 48, 437–446 (2004).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Zoetendal, E. G., Akkermans, A. D. L., Akkermans-van Vliet, W. M., de Visser, J. A. G. M. & de Vos, W. M. The host genotype affects the bacterial community in the human gastrointestinal tract. Microb. Ecol. Health Dis. 13, 129–134 (2001).

    Article  Google Scholar 

  13. 13

    Leavis, H. L., Bonten, M. J. & Willems, R. J. Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr. Opin. Microbiol. 9, 454–460 (2006).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Miragaia, M., Thomas, J. C., Couto, I., Enright, M. C. & de Lencastre, H. Inferring a population structure for Staphylococcus epidermidis from multilocus sequence typing data. J. Bacteriol. 189, 2540–2552 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Callaghan, M. J., Jolley, K. A. & Maiden, M. C. Opacity-associated adhesin repertoire in hyperinvasive Neisseria meningitidis . Infect. Immun. 74, 5085–5094 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16

    Robinson, D. A. & Enright, M. C. Multilocus sequence typing and the evolution of methicillin-resistant Staphylococcus aureus . Clin. Microbiol. Infect. 10, 92–97 (2004).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Robinson, D. A., Sutcliffe, J. A., Tewodros, W., Manoharan, A. & Bessen, D. E. Evolution and global dissemination of macrolide-resistant group A streptococci. Antimicrob. Agents Chemother. 50, 2903–2911 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18

    Wirth, T. et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60, 1136–1151 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19

    Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    ADS  PubMed  Article  CAS  Google Scholar 

  20. 20

    Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21

    Guarner, F. et al. Mechanisms of disease: the hygiene hypothesis revisited. Nature Clin. Pract. Gastroenterol. Hepatol. 3, 275–284 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear–cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunol. 5, 104–112 (2004).

    CAS  Article  Google Scholar 

  23. 23

    Martin, F. P. et al. A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol. Syst. Biol. 3, 112 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Ley, R. E., Peterson, D. A. & Gordon, J. I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Gong, J. et al. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol. Ecol. 59, 147–157 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Mackie, R. I., Rycyk, M., Ruemmler, R. L., Aminov, R. I. & Wikelski, M. Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galapagos archipelago. Physiol. Biochem. Zool. 77, 127–138 (2004).

    PubMed  Article  Google Scholar 

  29. 29

    Nelson, K. E. et al. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ. Microbiol. 5, 1212–1220 (2003).

    PubMed  Article  Google Scholar 

  30. 30

    Uenishi, G. et al. Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity. Am. J. Primatol. 69, 367–376 (2007).

    CAS  PubMed  Article  Google Scholar 

  31. 31

    Wilson, K. H., Brown, R. S., Andersen, G. L., Tsang, J. & Sartor, B. Comparison of fecal biota from specific pathogen free and feral mice. Anaerobe 12, 249–253 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Wilson, D. S. Biological communities as functionally organized units. Ecology 78, 2018–2024 (1997).

    Article  Google Scholar 

  33. 33

    Foster, K. R. & Wenseleers, T. A general model for the evolution of mutualisms. J. Evol. Biol. 19, 1283–1293 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Flint, H. J. Polysaccharide breakdown by anaerobic microorganisms inhabiting the mammalian gut. Adv. Appl. Microbiol. 56, 89–120 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Flint, H. J., Duncan, S. H., Scott, K. P. & Louis, P. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol. 9, 1101–1111 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Fons, M., Gomez, A. & Karjalainen, T. Mechanisms of colonisation and colonisation resistance of the digestive tract. Part 2: bacteria/bacteria interactions. Microb. Ecol. Health Dis. 12, 240–246 (2000).

    Article  Google Scholar 

  38. 38

    Reid, G. & Bruce, A. W. Probiotics to prevent urinary tract infections: the rationale and evidence. World J. Urol. 24, 28–32 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Brook, I. The role of bacterial interference in otitis, sinusitis and tonsillitis. Otolaryngol. Head Neck Surg. 133, 139–146 (2005).

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Servin, A. L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 28, 405–440 (2004).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Tilman, D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  42. 42

    Pool-Zobel, B., Veeriah, S. & Bohmer, F. D. Modulation of xenobiotic metabolising enzymes by anticarcinogens — focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis. Mutat. Res. 591, 74–92 (2005).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Doebeli, M., Hauert, C. & Killingback, T. The evolutionary origin of cooperators and defectors. Science 306, 859–862 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  44. 44

    McFall-Ngai, M. Adaptive immunity: care for the community. Nature 445, 153 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  45. 45

    Macpherson, A. J., Geuking, M. B. & McCoy, K. D. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115, 153–162 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46

    Matzinger, P. The danger model: a renewed sense of self. Science 296, 301–305 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  47. 47

    O'Keefe, S. J. et al. Why do African Americans get more colon cancer than Native Africans? J. Nutr. 137, 175S–182S (2007).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Moore, W. E. & Moore, L. H. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61, 3202–3207 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).

    ADS  CAS  PubMed  Article  Google Scholar 

  50. 50

    Dethlefsen, L., Eckburg, P. B., Bik, E. M. & Relman, D. A. Assembly of the human intestinal microbiota. Trends Ecol. Evol. 21, 517–523 (2006).

    PubMed  Article  Google Scholar 

  51. 51

    Young, V. B. & Schmidt, T. M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J. Clin. Microbiol. 42, 1203–1206 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52

    Li, J. et al. Identification of early microbial colonizers in human dental biofilm. J. Appl. Microbiol. 97, 1311–1318 (2004).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54

    Klaassens, E. S., de Vos, W. M. & Vaughan, E. E. Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl. Environ. Microbiol. 73, 1388–1392 (2007).

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Lepp, P. W. et al. Methanogenic Archaea and human periodontal disease. Proc. Natl Acad. Sci. USA 101, 6176–6181 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  56. 56

    Jernberg, C., Sullivan, A., Edlund, C. & Jansson, J. K. Monitoring of antibiotic-induced alterations in the human intestinal microflora and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl. Environ. Microbiol. 71, 501–506 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Pepin, J. et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile-associated diarrhea: a cohort study during an epidemic in Quebec. Clin. Infect. Dis. 41, 1254–1260 (2005).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Lofmark, S., Jernberg, C., Jansson, J. K. & Edlund, C. Clindamycin-induced enrichment and long-term persistence of resistant Bacteroides spp. and resistance genes. J. Antimicrob. Chemother. 58, 1160–1167 (2006).

    PubMed  Article  CAS  Google Scholar 

  59. 59

    Sjolund, M., Tano, E., Blaser, M. J., Andersson, D. I. & Engstrand, L. Persistence of resistant Staphylococcus epidermidis after single course of clarithromycin. Emerg. Infect. Dis. 11, 1389–1393 (2005).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60

    Kolenbrander, P. E. et al. Bacterial interactions and successions during plaque development. Periodontol. 2000 42, 47–79 (2006).

    PubMed  Article  Google Scholar 

  61. 61

    Savage, D. C. in Mucosal Immunology (eds Mestecky, J. et al.) 19–34 (Elsevier, Boston, 2005).

    Google Scholar 

  62. 62

    Caufield, P. W. et al. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect. Immun. 68, 4018–4023 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Samuel, B. S. & Gordon, J. I. A humanized gnotobiotic mouse model of host–Archaeal-bacterial mutualism. Proc. Natl Acad. Sci. USA 103, 10011–10016 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  64. 64

    Kolenbrander, P. E. et al. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66, 486–505 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65

    Xu, J. et al. A genomic view of the human–Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  66. 66

    Schell, M. A. et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl Acad. Sci. USA 99, 14422–14427 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  67. 67

    Czárán, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl Acad. Sci. USA 99, 786–790 (2002).

    ADS  PubMed  Article  CAS  Google Scholar 

  68. 68

    Gordon, D. M., Riley, M. A. & Pinou, T. Temporal changes in the frequency of colicinogeny in Escherichia coli from house mice. Microbiology 144, 2233–2240 (1998).

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Sperandio, V., Torres, A. G., Jarvis, B., Nataro, J. P. & Kaper, J. B. Bacteria–host communication: the language of hormones. Proc. Natl Acad. Sci. USA 100, 8951–8956 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  70. 70

    Shiner, E. K., Rumbaugh, K. P. & Williams, S. C. Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. FEMS Microbiol. Rev. 29, 935–947 (2005).

    CAS  PubMed  Article  Google Scholar 

  71. 71

    Rendon, M. A. et al. Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc. Natl Acad. Sci. USA 104, 10637–10642 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  72. 72

    Wren, B. W. The yersiniae — a model genus to study the rapid evolution of bacterial pathogens. Nature Rev. Microbiol. 1, 55–64 (2003).

    CAS  Article  Google Scholar 

  73. 73

    Monot, M. et al. On the origin of leprosy. Science 308, 1040–1042 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Brown, N. F., Wickham, M. E., Coombes, B. K. & Finlay, B. B. Crossing the line: selection and evolution of virulence traits. PLoS Pathog. 2, e42 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75

    Woolhouse, M. E., Webster, J. P., Domingo, E., Charlesworth, B. & Levin, B. R. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nature Genet. 32, 569–577 (2002).

    CAS  PubMed  Article  Google Scholar 

  76. 76

    Wickham, M. E., Brown, N. F., Boyle, E. C., Coombes, B. K. & Finlay, B. B. Virulence is positively selected by transmission success between mammalian hosts. Curr. Biol. 17, 783–788 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Walther, B. A. & Ewald, P. W. Pathogen survival in the external environment and the evolution of virulence. Biol. Rev. Camb. Philos. Soc. 79, 849–869 (2004).

    PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Boots, M. & Mealor, M. Local interactions select for lower pathogen infectivity. Science 315, 1284–1286 (2007).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Taylor, L. H., Latham, S. M. & Woolhouse, M. E. Risk factors for human disease emergence. Phil. Trans. R. Soc. Lond. B 356, 983–989 (2001).

    CAS  Article  Google Scholar 

  80. 80

    Naylor, S. W., Gally, D. L. & Low, J. C. Enterohaemorrhagic E. coli in veterinary medicine. Int. J. Med. Microbiol. 295, 419–441 (2005).

    CAS  PubMed  Article  Google Scholar 

  81. 81

    Read, A. F. & Taylor, L. H. The ecology of genetically diverse infections. Science 292, 1099–1102 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  82. 82

    West, S. A. & Buckling, A. Cooperation, virulence and siderophore production in bacterial parasites. Proc. R. Soc. Lond B 270, 37–44 (2003).

    Article  Google Scholar 

  83. 83

    Gardner, A., West, S. A. & Buckling, A. Bacteriocins, spite and virulence. Proc. R. Soc. Lond B 271, 1529–1535 (2004).

    CAS  Article  Google Scholar 

  84. 84

    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  85. 85

    Woolhouse, M. E., Taylor, L. H. & Haydon, D. T. Population biology of multihost pathogens. Science 292, 1109–1112 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  86. 86

    Cheesman, S. E. & Guillemin, K. We know you are in there: conversing with the indigenous gut microbiota. Res. Microbiol. 158, 2–9 (2007).

    PubMed  Article  Google Scholar 

  87. 87

    Hongoh, Y. et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 71, 6590–6599 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Kikuchi, Y. & Graf, J. Spatial and temporal population dynamics of a naturally occurring two-species microbial community inside the digestive tract of the medicinal leech. Appl. Environ. Microbiol. 73, 1984–1991 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. 89

    Broderick, N. A., Raffa, K. F. & Handelsman, J. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl Acad. Sci. USA 103, 15196–15199 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  90. 90

    Cox, C. R. & Gilmore, M. S. Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect. Immun. 75, 1565–1576 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91

    Fraune, S. & Bosch, T. Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra . Proc. Natl Acad. Sci. USA 104, 13146–13151 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  92. 92

    Nyholm, S. V. & McFall-Ngai, M. J. The winnowing: establishing the squid–Vibrio symbiosis. Nature Rev. Microbiol. 2, 632–642 (2004).

    CAS  Article  Google Scholar 

  93. 93

    Davidson, S. K. & Stahl, D. A. Transmission of nephridial bacteria of the earthworm Eisenia fetida . Appl. Environ Microbiol. 72, 769–775 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Goodrich-Blair, H. & Clarke, D. J. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol. Microbiol. 64, 260–268 (2007).

    CAS  PubMed  Article  Google Scholar 

  95. 95

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96

    Collins, M. D. et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44, 812–826 (1994).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Research in the laboratory of D.A.R. is supported by funds from the Doris Duke Charitable Foundation, the Horn Foundation, the Office of Naval Research and the National Institutes of Health (NIH). Research in the laboratory of M.M.-N. is supported by the NIH and the National Science Foundation. D.A.R. is a recipient of an NIH Director's Pioneer Award and a Doris Duke Distinguished Clinical Scientist Award.

Author information

Affiliations

Authors

Additional information

Reprints and permissions information is available at http://npg.nature.com/reprints.

Correspondence should be addressed to D.A.R. (relman@stanford.edu).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dethlefsen, L., McFall-Ngai, M. & Relman, D. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449, 811–818 (2007). https://doi.org/10.1038/nature06245

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing