Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modulation of Saturn’s radio clock by solar wind speed

Abstract

The internal rotation rates of the giant planets can be estimated by cloud motions, but such an approach is not very precise because absolute wind speeds are not known a priori and depend on latitude1: periodicities in the radio emissions, thought to be tied to the internal planetary magnetic field, are used instead2,3,4,5. Saturn, despite an apparently axisymmetric magnetic field6, emits kilometre-wavelength (radio) photons from auroral sources. This emission is modulated at a period initially identified as 10 h 39 min 24 ± 7 s, and this has been adopted as Saturn’s rotation period3. Subsequent observations7,8, however, revealed that this period varies by ±6 min on a timescale of several months to years. Here we report that the kilometric radiation period varies systematically by ±1% with a characteristic timescale of 20–30 days. Here we show that these fluctuations are correlated with solar wind speed at Saturn, meaning that Saturn’s radio clock is controlled, at least in part, by conditions external to the planet’s magnetosphere. No correlation is found with the solar wind density, dynamic pressure or magnetic field; the solar wind speed therefore has a special function. We also show that the long-term fluctuations are simply an average of the short-term ones, and therefore the long-term variations are probably also driven by changes in the solar wind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evidence of short-term variations in P SKR and their relation to long-term variations.
Figure 2: ‘Short-term’ variations in P SKR compared with solar wind speed at Saturn and with variations in orbital parameters of Cassini.
Figure 3: Comparison of SKR period variations with solar wind speed and dynamic pressure at Saturn.

Similar content being viewed by others

References

  1. Sanchez-Lavega, A. How long is the day on Saturn? Science 307, 1223–1224 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Higgins, C. A., Carr, T. D., Reyes, F., Greenman, W. B. & Lebo, G. R. A redefinition of Jupiter’s rotation period. J. Geophys. Res. 102, 22033–22041 (1997)

    Article  ADS  Google Scholar 

  3. Desch, M. D. & Kaiser, M. L. Voyager measurement of the rotation period of Saturn’s magnetic field. Geophys. Res. Lett. 8, 253–256 (1981)

    Article  ADS  Google Scholar 

  4. Desch, M. D., Connerney, J. E. P. & Kaiser, M. L. The rotation period of Uranus. Nature 322, 42–43 (1986)

    Article  ADS  Google Scholar 

  5. Lecacheux, A., Zarka, P., Desch, M. D. & Evans, D. R. The sidereal rotation period of Neptune. Geophys. Res. Lett. 20, 2711–2714 (1993)

    Article  ADS  Google Scholar 

  6. Connerney, J. E. P., Ness, N. F. & Acuña, M. H. Zonal harmonic model of Saturn’s magnetic field from Voyager 1 and 2 observations. Nature 298, 44–46 (1982)

    Article  ADS  Google Scholar 

  7. Galopeau, P. H. M. & Lecacheux, A. Variations in Saturn’s radio rotation period measured at kilometer wavelengths. J. Geophys. Res. 105, 13089–13101 (2000)

    Article  ADS  Google Scholar 

  8. Gurnett, D. A. et al. Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307, 1255–1259 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Zarka, P. Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res. 103, 20159–20194 (1998)

    Article  ADS  Google Scholar 

  10. Zarka, P. in Planetary Radio Emissions II (eds Rucker, H. O., Bauer, S. J. & Pedersen, B. M.) 327–342 (Austrian Acad. Sci. Press, Vienna, 1988)

    Google Scholar 

  11. Ness, N. F. in Planetary Radio Emissions II (eds Rucker, H. O., Bauer, S. J. & Pedersen, B. M.) 3–13 (Austrian Acad. Sci. Press, Vienna, 1988)

    Google Scholar 

  12. Warwick, J. W. et al. Planetary radio astronomy observations from Voyager 1 near Saturn. Science 212, 239–243 (1981)

    Article  ADS  CAS  Google Scholar 

  13. Galopeau, P. H. M., Zarka, P. & Le Quéau, D. Source location of Saturn’s kilometric radiation: The Kelvin–Helmholtz instability hypothesis. J. Geophys. Res. 100, 26397–26410 (1995)

    Article  ADS  Google Scholar 

  14. Galopeau, P., Ortega-Molina, A. & Zarka, P. Evidence of Saturn’s magnetic field anomaly from SKR high-frequency limit. J. Geophys. Res. 96, 14129–14140 (1991)

    Article  ADS  Google Scholar 

  15. Connerney, J. E. P. & Desch, M. D. Comment on: ‘Evidence of Saturn’s magnetic field anomaly from SKR high-frequency limit’ by Galopeau et al . J. Geophys. Res. 97, 8713–8717 (1992)

    Article  ADS  Google Scholar 

  16. Galopeau, P. & Zarka, P. Reply to the Comment on: ‘Evidence of Saturn’s magnetic field anomaly from SKR high-frequency limit’ by Connerney & Desch. J. Geophys. Res. 97, 12291–12297 (1992)

    Article  ADS  Google Scholar 

  17. Kurth, W. S., Lecacheux, A., Averkamp, T. F., Groene, J. B. & Gurnett, D. A. A Saturnian longitude system based on a variable kilometric radiation period. Geophys. Res. Lett. 34 L02201 doi: 10.1029/2006GL028336 (2007)

    Article  ADS  Google Scholar 

  18. Cecconi, B. & Zarka, P. Model of a variable radio period for Saturn. J. Geophys. Res. 110 A12203 doi: 10.1029/2005JA011085 (2005)

    Article  ADS  Google Scholar 

  19. Gurnett, D. A. et al. The variable rotation period of the inner region of Saturn’s plasma disk. Science 316, 442–445 (2007); published online 22 March 2007

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Desch, M. D. Evidence for solar wind control of Saturn radio emission. J. Geophys. Res. 87, 4549–4554 (1982)

    Article  ADS  Google Scholar 

  21. Desch, M. D. & Rucker, H. O. The relationship between Saturn kilometric radiation and the solar wind. J. Geophys. Res. 88, 8999–9006 (1983)

    Article  ADS  Google Scholar 

  22. Bevington, P. R. & Robinson, D. K. Data Reduction and Error Analysis for the Physical Sciences 2nd edn 198–200 (McGraw-Hill, New York, 1992)

    Google Scholar 

  23. Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y. & Yokoyama, T. Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements. J. Geophys. Res. 110 A11208 doi: 10.1029/2004JA010959 (2005)

    Article  ADS  Google Scholar 

  24. Prangé, R. et al. An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature 432, 78–81 (2004)

    Article  ADS  PubMed  Google Scholar 

  25. Hanlon, P. G. et al. On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of interplanetary coronal mass ejections including the formation of a merged interaction region. J. Geophys. Res. 109 A09S03 doi: 10.1029/2003JA010112 (2004)

    Article  Google Scholar 

  26. Espinosa, S. E., Southwood, D. J. & Dougherty, M. K. How can Saturn impose its rotation period in a noncorotating magnetosphere? J. Geophys. Res. A. 108 1086 doi: 10.1029/2001JA005084 (2003)

    Article  ADS  Google Scholar 

  27. Cowley, S. W. H. et al. Cassini observations of planetary-period magnetic field oscillations in Saturn’s magnetosphere: Doppler shifts and phase motion. Geophys. Res. Lett. 33, L07104 10.1029/2005GL025522. (2006)

  28. Southwood, D. J., Dougherty, M. K. & Kivelson, M. G. Time variability in Saturn’s magnetic rotation. Presented at American Geophysical Union Fall Meeting 2006. abstract P52A-08 (2006)

  29. Clarke, K. E. et al. Cassini observations of planetary-period oscillations of Saturn’s magnetopause. Geophys. Res. Lett. 33 L23104 doi: 10.1029/2006GL027821 (2006)

    Article  ADS  Google Scholar 

  30. Cecconi, B., Zarka, P. & Kurth, W. S. in Planetary Radio Emissions VI (eds Rucker, H. O., Kurth, W. S. & Mann, G.) 37–49 (Austrian Acad. Sci. Press, Vienna, 2006)

    Google Scholar 

Download references

Acknowledgements

We thank D. Southwood for a seminar at Meudon Observatory; F. Mottez, S. Hess and J.-M. Griessmeier for early inputs; B. Kurth for comments on the manuscript; D. Pelat for advice on the statistical analysis; Cassini Radio and Plasma Wave Science (RPWS) engineers at the University of Iowa and the Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique for support on instrumental questions and ephemeris; and N. Letourneur for processing RPWS data. The French co-authors acknowledge support from the Centre National d’Études Spatiales.

Author Contributions P.Z., L.L., B.C. and R.P. contributed equally to this work. H.O.R. contributed to the projection of solar wind data. P.Z. wrote the paper. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Zarka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures S1-S3 with Legends. (PDF 1103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarka, P., Lamy, L., Cecconi, B. et al. Modulation of Saturn’s radio clock by solar wind speed. Nature 450, 265–267 (2007). https://doi.org/10.1038/nature06237

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06237

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing