Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of single optical plasmons in metallic nanowires coupled to quantum dots

Abstract

Control over the interaction between single photons and individual optical emitters is an outstanding problem in quantum science and engineering. It is of interest for ultimate control over light quanta1, as well as for potential applications such as efficient photon collection2, single-photon switching3 and transistors4, and long-range optical coupling of quantum bits5,6. Recently, substantial advances have been made towards these goals, based on modifying photon fields around an emitter using high-finesse optical cavities2,3,5,6,7,8. Here we demonstrate a cavity-free, broadband approach for engineering photon–emitter interactions4,9 via subwavelength confinement of optical fields near metallic nanostructures10,11,12,13. When a single CdSe quantum dot is optically excited in close proximity to a silver nanowire, emission from the quantum dot couples directly to guided surface plasmons in the nanowire, causing the wire’s ends to light up. Non-classical photon correlations between the emission from the quantum dot and the ends of the nanowire demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that efficient coupling is accompanied by more than 2.5-fold enhancement of the quantum dot spontaneous emission, in good agreement with theoretical predictions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Radiative coupling of quantum dots to conducting nanowires.
Figure 2: Experimental set-up.
Figure 3: Demonstration of single surface plasmon generation.
Figure 4: Characterization of quantum dot–nanowire coupling.

References

  1. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, Photons. (Oxford Univ. Press, New York, 2006)

    Book  Google Scholar 

  2. Englund, D. et al. Controlling the spontaneous emission rate of single quantum in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005)

    ADS  Article  Google Scholar 

  3. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    ADS  CAS  Article  Google Scholar 

  4. Chang, D. E., Sørensen, A. S., Demler, E. A. & Lukin, M. D. A single-photon transistor using nano-scale surface plasmons. Nature Phys. advance online publication doi: 10.1038/nphys708 (26 August 2007)

  5. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    ADS  CAS  Article  Google Scholar 

  6. Imamoğlu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)

    ADS  Article  Google Scholar 

  7. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007)

    ADS  CAS  Article  Google Scholar 

  8. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science 317, 488–490 (2007)

    ADS  CAS  Article  Google Scholar 

  9. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    ADS  CAS  Article  Google Scholar 

  10. Atwater, H. A. The promise of plasmonics. Sci. Am. 296, 56–63 (2007)

    CAS  Article  Google Scholar 

  11. Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007)

    ADS  CAS  Article  Google Scholar 

  12. Sanders, A. W. et al. Observation of plasmon propagation, redirection, and fan-out in silver nanowires. Nano Lett. 6, 1822–1826 (2006)

    ADS  CAS  Article  Google Scholar 

  13. Ditlbacher, H. et al. Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005)

    ADS  Article  Google Scholar 

  14. Nayak, K. P. et al. Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence. Opt. Express 15, 5431–5438 (2007)

    ADS  CAS  Article  Google Scholar 

  15. Takahara, J., Yamagishi, S., Taki, H., Morimoto, A. & Kobayashi, T. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22, 475–477 (1997)

    ADS  CAS  Article  Google Scholar 

  16. Chang, D. E., Sørensen, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B 76, 035420 (2007)

    ADS  Article  Google Scholar 

  17. Chance, R. R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978)

    CAS  Google Scholar 

  18. Sun, Y., Gates, B., Mayers, B. & Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165–168 (2002)

    ADS  CAS  Article  Google Scholar 

  19. Chung, I., Witkoskie, J. B., Cao, J. & Bawendi, M. G. Description of the fluorescence intensity time trace of collections of CdSe nanocrystal quantum dots based on single quantum dot fluorescence blinking statistics. Phys. Rev. E 73, 011106 (2006)

    ADS  Article  Google Scholar 

  20. Tao, A. et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 3, 1229–1233 (2003)

    ADS  CAS  Article  Google Scholar 

  21. Lounis, B., Bechtel, H. A., Gerion, D., Alivisatos, P. & Moerner, W. E. Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem. Phys. Lett. 329, 399–404 (2000)

    ADS  CAS  Article  Google Scholar 

  22. Dickson, R. M. & Lyon, L. A. Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104, 6095–6098 (2000)

    CAS  Article  Google Scholar 

  23. Hochberg, M., Baehr-Jones, T., Walker, C. & Scherer, A. Integrated plasmon and dielectric waveguides. Opt. Express 12, 5481–5486 (2004)

    ADS  Article  Google Scholar 

  24. Biteen, J. S., Lewis, N. S. & Atwater, H. A. Spectral tuning of plasmon-enhanced silicon quantum dot luminescence. Appl. Phys. Lett. 88, 131109 (2006)

    ADS  Article  Google Scholar 

  25. Zhang, J., Ye, Y.-H., Wang, X., Rochon, P. & Xiao, M. Coupling between semiconductor quantum dots and two-dimensional surface plasmons. Phys. Rev. B 72, 201306(R) (2005)

    ADS  Article  Google Scholar 

  26. Mertens, H., Biteen, J. S., Atwater, H. A. & Polman, A. Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. Nano Lett. 6, 2622–2625 (2006)

    ADS  CAS  Article  Google Scholar 

  27. Bellessa, J., Bonnand, C. & Plenet, J. C. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett. 93, 036404 (2004)

    ADS  CAS  Article  Google Scholar 

  28. Dintinger, J., Klein, S., Bustos, F., Barnes, W. L. & Ebbesen, T. W. Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys. Rev. B 71, 035424 (2005)

    ADS  Article  Google Scholar 

  29. Klimov, V. V., Ducloy, M. & Letokhov, V. S. A model of an apertureless scanning microscope with a prolate nanospheroid as a tip and an excited molecule as an object. Chem. Phys. Lett. 358, 192–198 (2002)

    ADS  CAS  Article  Google Scholar 

  30. Smolyaninov, I. I., Elliott, J., Zayats, A. & Davis, C. C. Far-field optical microscopy with a nanometer-scale resolution based on the in-plane magnification by surface plasmon polaritons. Phys. Rev. Lett. 94, 057401 (2005)

    ADS  Article  Google Scholar 

  31. Sagué, G., Vetsch, E., Alt, W., Meschede, D. & Rauschenbeutel, A. Cold atom physics using ultra-thin optical fibers: light-induced dipole forces and surface interactions. Preprint at 〈http://arxiv.org/quant-ph/0701167〉 (2007)

Download references

Acknowledgements

We acknowledge discussions with M. Loncar, J. Doyle, A. Sørensen and M.-H. Yoon, and support from the NSF, DARPA, Harvard-MIT CUA, Harvard CNS, the DTO, the Packard Foundation and Samsung Electronics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Park or M. D. Lukin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Notes with Supplementary Figures S1-S12 and additional references. (PDF 2677 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Akimov, A., Mukherjee, A., Yu, C. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007). https://doi.org/10.1038/nature06230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06230

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing