Subjects

Abstract

Comprehensive knowledge of the dynamic behaviour of electrons in condensed-matter systems is pertinent to the development of many modern technologies, such as semiconductor and molecular electronics, optoelectronics, information processing and photovoltaics. Yet it remains challenging to probe electronic processes, many of which take place in the attosecond (1 as = 10-18 s) regime. In contrast, atomic motion occurs on the femtosecond (1 fs = 10-15 s) timescale and has been mapped in solids in real time1,2 using femtosecond X-ray sources3. Here we extend the attosecond techniques4,5 previously used to study isolated atoms in the gas phase to observe electron motion in condensed-matter systems and on surfaces in real time. We demonstrate our ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten. Our data reveal a delay of approximately 100 attoseconds between the emission of photoelectrons that originate from localized core states of the metal, and those that are freed from delocalized conduction-band states. These results illustrate that attosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attosecond timescale in condensed-matter systems and on surfaces.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & in Light Scattering in Solids IX (eds Cardona, M. & Merlin, R.) 371–422 (Topics in Applied Physics 108, Springer, Berlin, 2007)

  2. 2.

    et al. Ultrafast bond softening in bismuth: Mapping a solid’s interatomic potential with X-rays. Science 315, 633–636 (2007)

  3. 3.

    , & Femto-second X-ray science. Rep. Prog. Phys. 69, 443–505 (2006)

  4. 4.

    et al. Attosecond metrology. Nature 414, 509–513 (2001)

  5. 5.

    et al. Atomic transient recorder. Nature 427, 817–821 (2004)

  6. 6.

    Über einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17, 132–148 (1905)

  7. 7.

    Electron-spectroscopy — outlook. J. Electron Spectrosc. Relat. Phenom. 5, 3–97 (1974)

  8. 8.

    & Photoemission studies of copper and silver: theory. Phys. Rev. 136, A1030–A1044 (1964)

  9. 9.

    , & Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys. 74, 703–740 (2002)

  10. 10.

    et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005)

  11. 11.

    , , & Dimensionality effects in time-dependent screening. Chem. Phys. Lett. 387, 132–137 (2004)

  12. 12.

    et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001)

  13. 13.

    Electron dynamics at surfaces. Surf. Sci. Rep. 21, 277–325 (1995)

  14. 14.

    et al. Tracking the motion of charges in a terahertz light field by femtosecond X-ray diffraction. Nature 442, 664–666 (2006)

  15. 15.

    et al. Picosecond laser interaction with metallic zirconium. Appl. Phys. Lett. 40, 185–187 (1982)

  16. 16.

    et al. Time-resolved coherent photoelectron spectroscopy of quantized electronic states on metal surfaces. Science 277, 1480–1482 (1997)

  17. 17.

    & Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997)

  18. 18.

    & Tunable photoemission with harmonics of subpicosecond lasers. Rev. Sci. Instrum. 65, 1853–1857 (1994)

  19. 19.

    et al. Laser-based apparatus for extended ultraviolet femtosecond time-resolved photoemission spectroscopy. Rev. Sci. Instrum. 72, 30–35 (2001)

  20. 20.

    et al. Observation of laser-assisted Auger decay in argon. Phys. Rev. Lett. 73, 2180–2183 (1994)

  21. 21.

    , , & Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation. Phys. Rev. Lett. 73, 2180–2183 (1994)

  22. 22.

    et al. Laser-assisted photoelectric effect from surfaces. Phys. Rev. Lett. 97, 113604 (2006)

  23. 23.

    et al. Attosecond control of electronic processes by intense light fields. Nature 422, 611–615 (2003)

  24. 24.

    , & Temporal characterization of attosecond XUV fields. J. Mod. Opt. 52, 339–360 (2005)

  25. 25.

    , & Attosecond streaking measurements. J. Mod. Opt. 52, 395–410 (2005)

  26. 26.

    et al. Direct measurement of light waves. Science 305, 1267–1269 (2004)

  27. 27.

    et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006)

  28. 28.

    , , , & Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002)

  29. 29.

    , & Calculations of electron inelastic mean free paths. 2. Data for 27 elements over the 50–2000-eV range. Surf. Interface Anal. 17, 911–926 (1991)

  30. 30.

    et al. Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses. Appl. Opt. 45, 4147–4156 (2006)

Download references

Acknowledgements

We thank W. Hachmann for expeditious preparation of the XUV multilayer optical substrate. We acknowledge partial financial support by the Deutsche Forschungsgemeinschaft through the DFG Cluster of Excellence Munich Centre for Advanced Photonics, and through the SFB 613, and by the Volkswagen Stiftung Germany, and by the EURYI scheme award. P.M.E. acknowledges support from the Basque and Spanish Governments. R.K. acknowledges a fellowship from the Austrian Academy of Sciences and additional support from the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation. The apparatus to generate attosecond pulses was constructed at Technische Universität Wien, thanks to the support of the FWF.

Author information

Affiliations

  1. Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

    • A. L. Cavalieri
    • , Th. Uphues
    • , A. Baltuška
    • , B. Horvath
    • , R. Kienberger
    •  & F. Krausz
  2. Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany

    • N. Müller
    • , Th. Uphues
    • , S. Hendel
    •  & U. Heinzmann
  3. Department für Physik, Ludwig-Maximilians-Universität, Am Coulombwall 1, D-85748 Garching, Germany

    • V. S. Yakovlev
    • , U. Kleineberg
    •  & F. Krausz
  4. Institut für Photonik, Technische Universität Wien, Gußhausstr. 27, A-1040 Wien, Austria

    • A. Baltuška
  5. Menlo Systems GmbH, Am Klopferspitz 19, D-82152 Martinsried, Germany

    • B. Schmidt
    • , L. Blümel
    •  & R. Holzwarth
  6. Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg, Germany

    • M. Drescher
  7. Dpto. Fisica de Materiales UPV/EHU, Centro Mixto CSIC-UPV/EHU and Donostia International Physics Center (DPIC), Paseo Manual de Lardizabal 4, 20018 San Sebastian, Spain

    • P. M. Echenique

Authors

  1. Search for A. L. Cavalieri in:

  2. Search for N. Müller in:

  3. Search for Th. Uphues in:

  4. Search for V. S. Yakovlev in:

  5. Search for A. Baltuška in:

  6. Search for B. Horvath in:

  7. Search for B. Schmidt in:

  8. Search for L. Blümel in:

  9. Search for R. Holzwarth in:

  10. Search for S. Hendel in:

  11. Search for M. Drescher in:

  12. Search for U. Kleineberg in:

  13. Search for P. M. Echenique in:

  14. Search for R. Kienberger in:

  15. Search for F. Krausz in:

  16. Search for U. Heinzmann in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to A. L. Cavalieri or F. Krausz or U. Heinzmann.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    The file contains additional description of the experimental apparatus, measurement technique, and data analysis, including Supplementary Figures 1-7 with Legends and Supplementary Table 1.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature06229

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.