Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Attosecond spectroscopy in condensed matter


Comprehensive knowledge of the dynamic behaviour of electrons in condensed-matter systems is pertinent to the development of many modern technologies, such as semiconductor and molecular electronics, optoelectronics, information processing and photovoltaics. Yet it remains challenging to probe electronic processes, many of which take place in the attosecond (1 as = 10-18 s) regime. In contrast, atomic motion occurs on the femtosecond (1 fs = 10-15 s) timescale and has been mapped in solids in real time1,2 using femtosecond X-ray sources3. Here we extend the attosecond techniques4,5 previously used to study isolated atoms in the gas phase to observe electron motion in condensed-matter systems and on surfaces in real time. We demonstrate our ability to obtain direct time-domain access to charge dynamics with attosecond resolution by probing photoelectron emission from single-crystal tungsten. Our data reveal a delay of approximately 100 attoseconds between the emission of photoelectrons that originate from localized core states of the metal, and those that are freed from delocalized conduction-band states. These results illustrate that attosecond metrology constitutes a powerful tool for exploring not only gas-phase systems, but also fundamental electronic processes occurring on the attosecond timescale in condensed-matter systems and on surfaces.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Attosecond time-resolved photoemission spectra.
Figure 3: Evidence of delayed photoemission.


  1. 1

    Reis, D. A. & Lindenberg, A. M. in Light Scattering in Solids IX (eds Cardona, M. & Merlin, R.) 371–422 (Topics in Applied Physics 108, Springer, Berlin, 2007)

    Google Scholar 

  2. 2

    Fritz, D. M. et al. Ultrafast bond softening in bismuth: Mapping a solid’s interatomic potential with X-rays. Science 315, 633–636 (2007)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Pfeifer, T., Spielmann, C. & Gerber, G. Femto-second X-ray science. Rep. Prog. Phys. 69, 443–505 (2006)

    ADS  Article  Google Scholar 

  4. 4

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Einstein, A. Über einen die Erzeugung und Verwandlung des Lichts betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17, 132–148 (1905)

    CAS  Article  Google Scholar 

  7. 7

    Siegbahn, K. Electron-spectroscopy — outlook. J. Electron Spectrosc. Relat. Phenom. 5, 3–97 (1974)

    CAS  Article  Google Scholar 

  8. 8

    Berglund, C. N. & Spicer, W. E. Photoemission studies of copper and silver: theory. Phys. Rev. 136, A1030–A1044 (1964)

    ADS  Article  Google Scholar 

  9. 9

    Brühwiler, P. A., Karis, O. & Martensson, N. Charge-transfer dynamics studied using resonant core spectroscopies. Rev. Mod. Phys. 74, 703–740 (2002)

    ADS  Article  Google Scholar 

  10. 10

    Föhlisch, A. et al. Direct observation of electron dynamics in the attosecond domain. Nature 436, 373–376 (2005)

    ADS  Article  Google Scholar 

  11. 11

    Borisov, A., Sánchez-Portal, D., Díez-Muino, R. & Echenique, P. M. Dimensionality effects in time-dependent screening. Chem. Phys. Lett. 387, 132–137 (2004)

    ADS  Article  Google Scholar 

  12. 12

    Huber, R. et al. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature 414, 286–289 (2001)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Haight, R. Electron dynamics at surfaces. Surf. Sci. Rep. 21, 277–325 (1995)

    ADS  Article  Google Scholar 

  14. 14

    Cavalleri, A. et al. Tracking the motion of charges in a terahertz light field by femtosecond X-ray diffraction. Nature 442, 664–666 (2006)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Yen, R. et al. Picosecond laser interaction with metallic zirconium. Appl. Phys. Lett. 40, 185–187 (1982)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Höfer, U. et al. Time-resolved coherent photoelectron spectroscopy of quantized electronic states on metal surfaces. Science 277, 1480–1482 (1997)

    Article  Google Scholar 

  17. 17

    Petek, H. & Ogawa, S. Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci. 56, 239–310 (1997)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Haight, R. & Peale, D. R. Tunable photoemission with harmonics of subpicosecond lasers. Rev. Sci. Instrum. 65, 1853–1857 (1994)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Siffalovic, P. et al. Laser-based apparatus for extended ultraviolet femtosecond time-resolved photoemission spectroscopy. Rev. Sci. Instrum. 72, 30–35 (2001)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Schins, J. M. et al. Observation of laser-assisted Auger decay in argon. Phys. Rev. Lett. 73, 2180–2183 (1994)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Glover, T. E., Schoenlein, R. W., Chin, A. H. & Shank, C. V. Observation of laser assisted photoelectric effect and femtosecond high order harmonic radiation. Phys. Rev. Lett. 73, 2180–2183 (1994)

    Article  Google Scholar 

  22. 22

    Miaja-Avila, L. et al. Laser-assisted photoelectric effect from surfaces. Phys. Rev. Lett. 97, 113604 (2006)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Baltuska, A. et al. Attosecond control of electronic processes by intense light fields. Nature 422, 611–615 (2003)

    ADS  Article  Google Scholar 

  24. 24

    Quéré, F., Mairesse, Y. & Itatani, J. Temporal characterization of attosecond XUV fields. J. Mod. Opt. 52, 339–360 (2005)

    ADS  Article  Google Scholar 

  25. 25

    Yakovlev, V., Bammer, F. & Scrinzi, A. Attosecond streaking measurements. J. Mod. Opt. 52, 395–410 (2005)

    ADS  Article  Google Scholar 

  26. 26

    Goulielmakis, E. et al. Direct measurement of light waves. Science 305, 1267–1269 (2004)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Kitzler, M., Milosevic, N., Scrinzi, A., Krausz, F. & Brabec, T. Quantum theory of attosecond XUV pulse measurement by laser dressed photoionization. Phys. Rev. Lett. 88, 173904 (2002)

    ADS  Article  Google Scholar 

  29. 29

    Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. 2. Data for 27 elements over the 50–2000-eV range. Surf. Interface Anal. 17, 911–926 (1991)

    CAS  Article  Google Scholar 

  30. 30

    Wonisch, A. et al. Design, fabrication, and analysis of chirped multilayer mirrors for reflection of extreme-ultraviolet attosecond pulses. Appl. Opt. 45, 4147–4156 (2006)

    ADS  CAS  Article  Google Scholar 

Download references


We thank W. Hachmann for expeditious preparation of the XUV multilayer optical substrate. We acknowledge partial financial support by the Deutsche Forschungsgemeinschaft through the DFG Cluster of Excellence Munich Centre for Advanced Photonics, and through the SFB 613, and by the Volkswagen Stiftung Germany, and by the EURYI scheme award. P.M.E. acknowledges support from the Basque and Spanish Governments. R.K. acknowledges a fellowship from the Austrian Academy of Sciences and additional support from the Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation. The apparatus to generate attosecond pulses was constructed at Technische Universität Wien, thanks to the support of the FWF.

Author information



Corresponding authors

Correspondence to A. L. Cavalieri or F. Krausz or U. Heinzmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains additional description of the experimental apparatus, measurement technique, and data analysis, including Supplementary Figures 1-7 with Legends and Supplementary Table 1. (PDF 3368 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cavalieri, A., Müller, N., Uphues, T. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing