Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33

Abstract

Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars1,2,3. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far2,3 all have masses within one standard deviation of 10. Here we report a mass of (15.65 ± 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary5. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed4. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 ± 6.9) companion, there must have been a ‘common envelope’ phase of evolution in which a significant amount of mass was lost from the system6. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars7,8,9.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Mean optical spectrum of M 33 X-7.
Figure 2: Phased X-ray light curve and radial velocity curve for M 33 X-7.
Figure 3: Optical light curves.
Figure 4: Schematic diagram of M 33 X-7.

References

  1. Remillard, R. A. & McClintock, J. E. X-ray properties of black-hole binaries. Annu. Rev. Astron. Astrophys. 44, 49–92 (2006)

    ADS  Article  Google Scholar 

  2. Charles, P. A. & Coe, M. J. in Compact Stellar X-ray Sources (eds Lewin, W. H. G. & van der Klis, M.) 215–265 (Cambridge Univ. Press, Cambridge, UK, 2006)

    Book  Google Scholar 

  3. Orosz, J. A. in A Massive Star Odyssey: From Main Sequence to Supernova (eds van der Hucht, K. A., Herrero, A. & Esteban, C.) 365–371 (Proc. IAU Symp. 212, ASP, San Francisco, 2003)

    Google Scholar 

  4. Brown, G. et al. Formation of high mass X-ray black hole binaries. New Astron. 6, 457–470 (2001)

    ADS  CAS  Article  Google Scholar 

  5. Pietsch, W. et al. M33 X-7: ChASeM 33 reveals the first eclipsing black hole X-ray binary. Astrophys. J. 646, 420–428 (2006)

    ADS  CAS  Article  Google Scholar 

  6. Tauris, T. M. & van den Heuvel, E. P. J. in Compact Stellar X-ray Sources (eds Lewin, W. H. G. & van der Klis, M.) 623–665 (Cambridge Univ. Press, Cambridge, UK, 2006)

    Book  Google Scholar 

  7. Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 at Z = 0.020 and Z = 0.001. Astron. Astrophys. 96 (Suppl.). 269–331 (1992)

    ADS  Google Scholar 

  8. Meynet, G., Maeder, A., Schaller, G., Schaerer, D. & Charbonnel, C. Grids of massive stars with high mass loss rates. V. From 12 to 120 at Z = 0.001, 0.004, 0.008, 0.020 and 0.040. Astron. Astrophys. 103 (Suppl.). 97–105 (1994)

    ADS  CAS  Google Scholar 

  9. Vázquez, G. A., Leitherer, C., Schaerer, D., Meynet, G. & Maeder, A. Models for massive stellar populations with rotation. Astrophys. J. 663, 995–1020 (2007)

    ADS  Article  Google Scholar 

  10. Pietsch, W. et al. The eclipsing massive X-ray binary M33 X-7: New X-ray observations and optical identification. Astron. Astrophys. 413, 879–887 (2004)

    ADS  CAS  Article  Google Scholar 

  11. Shporer, A., Hartman, J., Mazeh, T. & Pietsch, W. Photometric analysis of the optical counterpart of the black hole HMXB M33 X-7. Astron. Astrophys. 462, 1091–1095 (2007)

    ADS  CAS  Article  Google Scholar 

  12. Lanz, T. & Hubeny, I. A Grid of non-LTE line-blanketed model atmospheres of O-type stars. Astrophys. J. 146 (Suppl.). 417–441 (2003)

    ADS  Article  Google Scholar 

  13. Ma, J. et al. Spectral energy distributions, ages, and metallicities of star clusters in M 33. Astron. J. 122, 1796–1806 (2001)

    ADS  Article  Google Scholar 

  14. Heap, S. R., Lanz, T. & Hubeny, I. Fundamental properties of O-type stars. Astrophys. J. 638, 409–432 (2007)

    ADS  Article  Google Scholar 

  15. Orosz, J. A. & Hauschildt, P. H. The use of the NextGen model atmospheres for cool giants in a light curve synthesis code. Astron. Astrophys. 364, 265–281 (2000)

    ADS  Google Scholar 

  16. Geis, D. R. in A Massive Star Odyssey: From Main Sequence to Supernova (eds van der Hucht, K. A., Herrero, A. & Esteban, C.) 91–100 (Proc. IAU Symp. 212, ASP, San Francisco, 2003)

    Google Scholar 

  17. Greiner, J., Cuby, J. G. & McCaughrean, M. J. An unusually massive stellar black hole in the Galaxy. Nature 414, 522–525 (2001)

    ADS  CAS  Article  Google Scholar 

  18. Harlaftis, E. T. & Greiner, J. The rotational broadening and the mass of the donor star of GRS 1915+105. Astron. Astrophys. 414, L13–L16 (2004)

    ADS  CAS  Article  Google Scholar 

  19. Neil, E. T., Bailyn, C. D. & Cobb, B. E. Infrared monitoring of the microquasar GRS 1915+105: detection of orbital and superhump signatures. Astrophys. J. 657, 409–414 (2007)

    ADS  Article  Google Scholar 

  20. Reynolds, A. P. et al. A new mass estimate for Hercules X-1. Mon. Not. R. Astron. Soc. 288, 43–52 (1997)

    ADS  Article  Google Scholar 

  21. Podsiadlowski, Rappaport, S. & Han, Z. On the formation and evolution of black hole binaries. Mon. Not. R. Astron. Soc. 341, 385–404 (2003)

    ADS  Article  Google Scholar 

  22. Lucy, L. B. & Walsh, J. R. Iterative techniques for the decomposition of long-slit spectra. Astron. J. 125, 2266–2275 (2003)

    ADS  Article  Google Scholar 

  23. Humphreys, R. M. & Sandage, A. On the stellar content and structure of the spiral galaxy M 33. Astrophys. J. 44 (Suppl.). 319–381 (1980)

    ADS  CAS  Article  Google Scholar 

  24. Alard, C. Image subtraction using a space-varying kernel. Astron. Astrophys. 144 (Suppl.). 363–370 (2000)

    ADS  Google Scholar 

  25. Stetson, P. B. DAOPHOT — A computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pacif. 99, 191–222 (1987)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Walsh for help with the SPECRES software, I. Hubeny for the use of his model atmosphere codes, and T. Matheson for support with the Gemini Observations. C.D.B. acknowledges support from the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome A. Orosz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Notes with additional references, Supplementary Figures 1-5 with Legends and a Supplementary Table 1. (PDF 2497 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Orosz, J., McClintock, J., Narayan, R. et al. A 15.65-solar-mass black hole in an eclipsing binary in the nearby spiral galaxy M 33. Nature 449, 872–875 (2007). https://doi.org/10.1038/nature06218

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06218

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing