Abstract
A fundamental question in nuclear physics is what combinations of neutrons and protons can make up a nucleus. Many hundreds of exotic neutron-rich isotopes have never been observed; the limit of how many neutrons a given number of protons can bind is unknown for all but the lightest elements1, owing to the delicate interplay between single particle and collective quantum effects in the nucleus. This limit, known as the neutron drip line, provides a benchmark for models of the atomic nucleus. Here we report a significant advance in the determination of this limit: the discovery of two new neutron-rich isotopes—40Mg and 42Al—that are predicted to be drip-line nuclei2. In the past, several attempts to observe 40Mg were unsuccessful3,4; moreover, the observation of 42Al provides an experimental indication that the neutron drip line may be located further towards heavier isotopes in this mass region than is currently believed. In stable nuclei, attractive pairing forces enhance the stability of isotopes with even numbers of protons and neutrons. In contrast, the present work shows that nuclei at the drip line gain stability from an unpaired proton, which narrows the shell gaps and provides the opportunity to bind many more neutrons5,6.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Laser spectroscopy of indium Rydberg atom bunches by electric field ionization
Scientific Reports Open Access 23 July 2020
-
Nanostructured organosilicon luminophores and their application in highly efficient plastic scintillators
Scientific Reports Open Access 08 October 2014
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Thoennessen, M. Reaching the limits of nuclear stability. Rep. Prog. Phys. 67, 1187–1232 (2004)
Audi, G., Wapstra, A. H. & Thibault, C. The Ame2003 atomic mass evaluation. Nucl. Phys. A 729, 337–676 (2003)
Notani, M. et al. New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64 A MeV 48Ca beam. Phys. Lett. B 542, 49–54 (2002)
Lukyanov, S. M. et al. Experimental evidence for the particle stability of 34Ne and 37Na. J. Phys. G Nucl. Part. Phys. 28, L41–L45 (2002)
Otsuka, T., Matsuo, T. & Abe, D. Mean field with tensor force and shell structure of exotic nuclei. Phys. Rev. Lett. 97, 162501 (2006)
Brown, B. A., Duguet, T., Otsuka, T., Abe, D. & Suzuki, T. Tensor interaction contributions to single-particle energies. Phys. Rev. C 74, 061303(R) (2006)
Möller, P., Nix, J. R., Myers, W. D. & Swiatecki, W. J. Nuclear Ground-State Masses and Deformations. At. Data Nucl. Data Tables 59, 185–381 (1995)
Samyn, M., Goriely, S., Bender, M. & Pearson, J. M. Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. III. Role of particle-number projection. Phys. Rev. C 70, 044309 (2004)
de Gennes, P. G. Superconductivity of Metals and Alloys (Addison-Wesley, Reading, Massachusetts, 1989)
Goriely, S., Samyn, M., Pearson, J. M. & Onsi, M. Further explorations of Skyrme–Hartree–Fock–Bogoliubov mass formulas. IV: Neutron-matter constraint. Nucl. Phys. A 750, 425–443 (2005)
Artukh, A. G. et al. New isotopes 21N, 23O, 24O and 25F, produced in nuclear reactions with heavy ions. Phys. Lett. 32B, 43–44 (1970)
Langevin, M. et al. Production of neutron-rich nuclei at the limits of particles stability by fragmentation of 44 MeV/u 40Ar projectiles. Phys. Lett. 150B, 71–74 (1985)
Guillemaud-Mueller, D. et al. Particle stability of the isotopes 26O and 32Ne in the reaction 44 MeV/nucleon 48Ca + Ta. Phys. Rev. C 41, 937–941 (1990)
Tarasov, O. et al. Search for 28O and study of neutron-rich nuclei near the N = 20 shell closure. Phys. Lett. B 409, 64–70 (1997)
Lutostansky, Yu. S., Lukyanov, S. M., Penionzhkevich, Yu. E. & Zverev, M. V. Neutron drip line in the region of O–Mg isotopes. Particles Nuclei Lett. 115, 86–93 (2002)
Gelbke, C. K. Rare isotope research capabilities at the NSCL today and at RIA in the future. Prog. Particle Nucl. Phys. 53, 363–372 (2004)
Morrissey, D. J., Sherrill, B. M., Steiner, M., Stolz, A. & Wiedenhoever, I. Commissioning the A1900 projectile fragment separator. Nucl. Instrum. Meth. B 204, 90–96 (2003)
Bazin, D., Caggiano, J. A., Sherrill, B. M., Yurkon, J. & Zeller, A. The S800 spectrograph. Nucl. Instrum. Methods Phys. Res. B 204, 629–633 (2003)
Tarasov, O. B. et al. New isotope 44Si and systematics of the production cross sections of the most neutron-rich nuclei. Phys. Rev. C 75, 064613 (2007)
Retamosa, J., Caurier, E., Nowacki, F. & Poves, A. Shell model study of the neutron-rich nuclei around N = 28. Phys. Rev. C 55, 1266–1274 (1997)
Acknowledgements
This work was supported by the US National Science Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Baumann, T., Amthor, A., Bazin, D. et al. Discovery of 40Mg and 42Al suggests neutron drip-line slant towards heavier isotopes. Nature 449, 1022–1024 (2007). https://doi.org/10.1038/nature06213
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/nature06213
This article is cited by
-
The impact of nuclear shape on the emergence of the neutron dripline
Nature (2020)
-
Laser spectroscopy of indium Rydberg atom bunches by electric field ionization
Scientific Reports (2020)
-
Effect of deformation on structure and reaction of Al isotopes using relativistic mean field densities in Glauber model
Indian Journal of Physics (2018)
-
Nanostructured organosilicon luminophores and their application in highly efficient plastic scintillators
Scientific Reports (2015)
-
Triaxiality and shape coexistence in the A ~ 30 island of inversion nuclei
Science China Physics, Mechanics & Astronomy (2015)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.