Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The a.c. and d.c. Josephson effects in a Bose–Einstein condensate

This article has been updated

Abstract

The alternating- and direct-current (a.c. and d.c.) Josephson effects were first discovered in a system of two superconductors, the macroscopic wavefunctions of which are weakly coupled via a tunnelling barrier1,2. In the a.c. Josephson effect1,2,3,4,5,6,7, a constant chemical potential difference (voltage) is applied, which causes an oscillating current to flow through the barrier. Because the frequency is proportional to the chemical potential difference only, the a.c. Josephson effect serves as a voltage standard2. In the d.c. Josephson effect, a small constant current is applied, resulting in a constant supercurrent flowing through the barrier4,5,8. In a sense, the particles do not ‘feel’ the presence of the tall tunnelling barrier, and flow freely through it with no driving potential. Bose–Einstein condensates should also support Josephson effects9; however, while plasma oscillations have been seen10 in a single Bose–Einstein condensate Josephson junction, the a.c. Josephson effect remains elusive. Here we observe the a.c. and d.c. Josephson effects in a single Bose–Einstein condensate Josephson junction. The d.c. Josephson effect has been observed previously only in superconducting systems11; in our study, it is evident when we measure the chemical potential–current relation of the Bose–Einstein condensate Josephson junction4,11. Our system constitutes a trapped-atom interferometer12,13 with continuous readout14, which operates on the basis of the a.c. Josephson effect. In addition, the measured chemical potential–current relation shows that the device is suitable for use as an analogue of the superconducting quantum interference device, which would sense rotation2,15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nonlinear systems analogous to the BEC Josephson junction.
Figure 2: Observation of the a.c. and d.c. Josephson effects.
Figure 3: Creating and imaging our BEC Josephson junction.
Figure 4: Time evolution of a BEC Josephson junction.

Similar content being viewed by others

Change history

  • 05 October 2007

    On 5 October 2007 Figs 3 and 4 were replaced online with higher resolution versions to match more closely the print resolution.

References

  1. Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962)

    Article  ADS  Google Scholar 

  2. Barone, A. & Paterno, G. Physics and Applications of the Josephson Effect Chs 1, 6, 11 13 (Wiley, New York, 1982)

    Book  Google Scholar 

  3. Dalfovo, F., Pitaevskii, L. & Stringari, S. Order parameter at the boundary of a trapped Bose gas. Phys. Rev. A. 54, 4213–4217 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Giovanazzi, S., Smerzi, A. & Fantoni, S. Josephson effects in dilute Bose-Einstein condensates. Phys. Rev. Lett. 84, 4521–4524 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Meier, F. & Zwerger, W. Josephson tunneling between weakly interacting Bose-Einstein condensates. Phys. Rev. A. 64, 033610 (2001)

    Article  ADS  Google Scholar 

  6. Raghavan, S., Smerzi, A., Fantoni, S. & Shenoy, S. R. Coherent oscillations between two weakly-coupled Bose-Einstein condensates: Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys. Rev. A. 59, 620–633 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Smerzi, A., Fantoni, S., Giovanazzi, S. & Shenoy, S. R. Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950–4953 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Sakellari, E., Leadbeater, M., Kylstra, N. J. & Adams, C. S. Josephson spectroscopy of a dilute Bose-Einstein condensate in a double-well potential. Phys. Rev. A 66, 033612 (2002)

    Article  ADS  Google Scholar 

  9. Javanainen, J. Oscillatory exchange of atoms between traps containing Bose condensates. Phys. Rev. Lett. 57, 3164–3166 (1986)

    Article  ADS  CAS  Google Scholar 

  10. Albiez, M. et al. Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  11. Anderson, P. W. & Rowell, J. M. Probable observation of the Josephson superconducting tunneling effect. Phys. Rev. Lett. 10, 230–232 (1963)

    Article  ADS  CAS  Google Scholar 

  12. Shin, Y. et al. Atom interferometry with Bose-Einstein condensates in a double-well potential. Phys. Rev. Lett. 92, 050405 (2001)

    Article  Google Scholar 

  13. Schumm, T. et al. Matter-wave interferometry in a double well on an atom chip. Nature Phys. 1, 57–62 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Saba, M. et al. Light scattering to determine the relative phase of two Bose-Einstein condensates. Science 307, 1945–1948 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Packard, R. E. & Vitale, S. Principles of superfluid-helium gyroscopes. Phys. Rev. B 46, 3540–3549 (1992)

    Article  ADS  CAS  Google Scholar 

  16. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  ADS  CAS  Google Scholar 

  17. Zapata, I., Sols, F. & Leggett, A. J. Josephson effect between trapped Bose-Einstein condensates. Phys. Rev. A. 57, R28–R31 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Marino, I., Raghavan, S., Fantoni, S., Shenoy, S. R. & Smerzi, A. Bose-condensate tunneling dynamics: momentum-shortened pendulum with damping. Phys. Rev. A. 60, 487–493 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Leggett, A. J. Bose-Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Feynman, R. P., Leighton, R. B. & Sands, M. The Feynman Lectures on Physics Vol. 3, Ch. 21 (Addison-Wesley, Reading, Massachusetts, 1965)

    MATH  Google Scholar 

  21. Likharev, K. K. Dynamics of Josephson Junctions and Circuits Chs 1, 3 5 (Gordon and Breach Science Publishers, New York, 1986)

    Google Scholar 

  22. Cataliotti, F. S. et al. Josephson junction arrays with Bose-Einstein condensates. Science 293, 843–846 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Pereverzev, S. V., Loshak, A., Backhaus, S., Davis, J. C. & Packard, R. E. Quantum oscillations between two weakly coupled reservoirs of superfluid 3He. Nature 388, 449–451 (1997)

    Article  ADS  CAS  Google Scholar 

  24. Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998)

    Article  ADS  CAS  Google Scholar 

  25. Hall, D. S., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Measurements of relative phase in two-component Bose-Einstein condensates. Phys. Rev. Lett. 81, 1543–1546 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Greiner, M., Bloch, I., Hänsch, T. W. & Esslinger, T. Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63, 031401(R) (2001)

    Article  ADS  Google Scholar 

  27. Ruostekoski, J. & Walls, D. F. Bose-Einstein condensate in a double-well potential as an open quantum system. Phys. Rev. A 58, R50–R53 (1998)

    Article  ADS  CAS  Google Scholar 

  28. Pitaevskii, L. & Stringari, S. Thermal versus quantum decoherence in double well trapped Bose-Einstein condensates. Phys. Rev. Lett. 87, 180402 (2001)

    Article  ADS  Google Scholar 

  29. Simmonds, R. W., Marchenkov, A., Hoskinson, E., Davis, J. C. & Packard, R. E. Quantum interference of superfluid 3He. Nature 412, 55–58 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Gustavson, T. L., Bouyer, P. & Kasevich, M. A. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett. 78, 2046–2049 (1997)

    Article  ADS  CAS  Google Scholar 

  31. Esslinger, T., Bloch, I. & Hänsch, T. W. Bose-Einstein condensation in a quadrupole-Ioffe configuration trap. Phys. Rev. A. 58, R2664–R2667 (1998)

    Article  ADS  CAS  Google Scholar 

  32. Andrews, M. R. et al. Direct, nondestructive observation of a Bose condensate. Science 273, 84–87 (1996)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Ketterle, M. Segev, E. Altman, Y. Kafri, E. Akkermans, E. Polturak, B. Shapiro and R. Pugatch for readings of the manuscript. This work was supported by the Israel Science Foundation and the Russell Berrie Nanotechnology Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Steinhauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figure 1, Supplementary Discussion and Supplementary Notes. The supplementary information gives additional details of the experimental system. Furthermore, the calibration of the experiment is discussed. Also, explicit definitions from the two-state model are given, as well as an approximate calculation of the conductance. We calculate the energy of an analogous superconducting circuit. The sensitivity of a BEC SQUID is given. (PDF 164 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, S., Lahoud, E., Shomroni, I. et al. The a.c. and d.c. Josephson effects in a Bose–Einstein condensate. Nature 449, 579–583 (2007). https://doi.org/10.1038/nature06186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing