Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ESCRT-III recognition by VPS4 ATPases


The ESCRT (endosomal sorting complex required for transport) pathway is required for terminal membrane fission events in several important biological processes, including endosomal intraluminal vesicle formation1,2, HIV budding3 and cytokinesis4. VPS4 ATPases perform a key function in this pathway by recognizing membrane-associated ESCRT-III assemblies and catalysing their disassembly5,6,7, possibly in conjunction with membrane fission. Here we show that the microtubule interacting and transport (MIT) domains of human VPS4A and VPS4B bind conserved sequence motifs located at the carboxy termini of the CHMP1–3 class of ESCRT-III proteins. Structures of VPS4A MIT–CHMP1A and VPS4B MIT–CHMP2B complexes reveal that the C-terminal CHMP motif forms an amphipathic helix that binds in a groove between the last two helices of the tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the opposite orientation to that of a canonical TPR interaction. Distinct pockets in the MIT domain bind three conserved leucine residues of the CHMP motif, and mutations that inhibit these interactions block VPS4 recruitment, impair endosomal protein sorting and relieve dominant-negative VPS4 inhibition of HIV budding. Thus, our studies reveal how the VPS4 ATPases recognize their CHMP substrates to facilitate the membrane fission events required for the release of viruses, endosomal vesicles and daughter cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: VPS4 MIT–CHMP binding interactions.
Figure 2: Structural basis for VPS4 MIT recognition of CHMP1–3.
Figure 3: The Vps4 MIT Leu64Asp mutation inhibits membrane protein sorting into the vacuolar lumen.
Figure 4: Secondary MIT Leu 64 mutations decrease endosomal recruitment and inhibition of HIV-1 budding by VPS4A proteins that lack ATP-binding activity.


  1. Hurley, J. H. & Emr, S. D. The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu. Rev. Biophys. Biomol. Struct. 35, 277–298 (2006)

    CAS  Article  Google Scholar 

  2. Williams, R. L. & Urbe, S. The emerging shape of the ESCRT machinery. Nature Rev. Mol. Cell Biol. 8, 355–368 (2007)

    CAS  Article  Google Scholar 

  3. Morita, E. & Sundquist, W. I. Retrovirus budding. Annu. Rev. Cell Dev. Biol. 20, 395–425 (2004)

    CAS  Article  Google Scholar 

  4. Carlton, J. G. & Martin-Serrano, J. Parallels between cytokinesis and retroviral budding—a role for the ESCRT machinery. Science 316, 1908–1912 (2007)

    ADS  CAS  Article  Google Scholar 

  5. Babst, M., Sato, T. K., Banta, L. M. & Emr, S. D. Endosomal transport function in yeast requires a novel AAA-type ATPase, Vps4p. EMBO J. 16, 1820–1831 (1997)

    CAS  Article  Google Scholar 

  6. Babst, M., Wendland, B., Estepa, E. J. & Emr, S. D. The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function. EMBO J. 17, 2982–2993 (1998)

    CAS  Article  Google Scholar 

  7. Babst, M., Katzmann, D., Estepa-Sabal, E., Meerloo, T. & Emr, S. Escrt-III. An endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell 3, 271–282 (2002)

    CAS  Article  Google Scholar 

  8. Phillips, S. A., Barr, V. A., Haft, D. H., Taylor, S. I. & Haft, C. R. Identification and characterization of SNX15, a novel sorting nexin involved in protein trafficking. J. Biol. Chem. 276, 5074–5084 (2001)

    CAS  Article  Google Scholar 

  9. Ciccarelli, F. D. et al. The identification of a conserved domain in both spartin and spastin, mutated in hereditary spastic paraplegia. Genomics 81, 437–441 (2003)

    CAS  Article  Google Scholar 

  10. Tsang, H. T. et al. A systematic analysis of human CHMP protein interactions: Additional MIT domain-containing proteins bind to multiple components of the human ESCRT III complex. Genomics 88, 333–346 (2006)

    CAS  Article  Google Scholar 

  11. Scott, A. et al. Structure and ESCRT-III protein interactions of the MIT domain of human VPS4A. Proc. Natl Acad. Sci. USA 102, 13813–13818 (2005)

    ADS  CAS  Article  Google Scholar 

  12. Reid, E. et al. The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum. Mol. Genet. 14, 19–38 (2005)

    CAS  Article  Google Scholar 

  13. McCullough, J. et al. Activation of the endosome-associated ubiquitin isopeptidase AMSH by STAM, a component of the multivesicular body-sorting machinery. Curr. Biol. 16, 160–165 (2006)

    CAS  Article  Google Scholar 

  14. Agromayor, M. & Martin-Serrano, J. Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J. Biol. Chem. 281, 23083–23091 (2006)

    CAS  Article  Google Scholar 

  15. Ma, Y. M. et al. Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation. J. Biol. Chem. 282, 9805–9812 (2007)

    CAS  Article  Google Scholar 

  16. Zamborlini, A. et al. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding. Proc. Natl Acad. Sci. USA 103, 19140–19145 (2006)

    ADS  CAS  Article  Google Scholar 

  17. Howard, T. L., Stauffer, D. R., Degnin, C. R. & Hollenberg, S. M. CHMP1 functions as a member of a newly defined family of vesicle trafficking proteins. J. Cell Sci. 114, 2395–2404 (2001)

    CAS  PubMed  Google Scholar 

  18. von Schwedler, U. K. et al. The protein network of HIV budding. Cell 114, 701–713 (2003)

    CAS  Article  Google Scholar 

  19. Hanson, P. I. & Whiteheart, S. W. AAA+ proteins: have engine, will work. Nature Rev. Mol. Cell Biol. 6, 519–529 (2005)

    CAS  Article  Google Scholar 

  20. Takasu, H. et al. Structural characterization of the MIT domain from human Vps4b. Biochem. Biophys. Res. Commun. 334, 460–465 (2005)

    CAS  Article  Google Scholar 

  21. Bishop, N. & Woodman, P. TSG101/mammalian VPS23 and mammalian VPS28 interact directly and are recruited to VPS4-induced endosomes. J. Biol. Chem. 276, 11735–11742 (2001)

    CAS  Article  Google Scholar 

  22. Fujita, H. et al. A dominant negative form of the AAA ATPase SKD1/VPS4 impairs membrane trafficking out of endosomal/lysosomal compartments: class E vps phenotype in mammalian cells. J. Cell Sci. 116, 401–414 (2003)

    CAS  Article  Google Scholar 

  23. Bowers, K. et al. Protein–protein interactions of ESCRT complexes in the yeast Saccharomyces cerevisiae . Traffic 5, 194–210 (2004)

    CAS  Article  Google Scholar 

  24. Ward, D. M. et al. The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J. Biol. Chem. 280, 10548–10555 (2005)

    CAS  Article  Google Scholar 

  25. Shiflett, S. L. et al. Characterization of Vta1p, a class E Vps protein in Saccharomyces cerevisiae . J. Biol. Chem. 279, 10982–10990 (2004)

    CAS  Article  Google Scholar 

  26. Garrus, J. E. et al. Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107, 55–65 (2001)

    CAS  Article  Google Scholar 

  27. Scott, A. et al. Structural and mechanistic studies of VPS4 proteins. EMBO J. 24, 3658–3669 (2005)

    CAS  Article  Google Scholar 

  28. Muziol, T. et al. Structural basis for budding by the ESCRT-III factor CHMP3. Dev. Cell 10, 821–830 (2006)

    CAS  Article  Google Scholar 

  29. Lin, Y., Kimpler, L. A., Naismith, T. V., Lauer, J. M. & Hanson, P. I. Interaction of the mammalian endosomal sorting complex required for transport (ESCRT) III protein hSnf7-1 with itself, membranes, and the AAA+ ATPase SKD1. J. Biol. Chem. 280, 12799–12809 (2005)

    CAS  Article  Google Scholar 

  30. Shim, S., Kimpler, L. A. & Hanson, P. I. Structure/function analyses of four core ESCRT-III reveals common regulatory role for extreme C-terminal domain. Traffic 8, 1068–1079 (2007)

    CAS  Article  Google Scholar 

Download references


We thank R. Rich, D. Myszka and S. Endicott for support; D. Winge for amino acid analysis; J. Shaw for reagents and expertise; and S. Alam for NMR expertise. W.I.S. received funding from the NIH.

Atomic coordinates for VPS4A MIT–CHMP1A180–196, free VPS4B MIT and VPS4B MIT–CHMP2B195–213 are deposited in the Protein Data Bank under accession numbers 2jq9, 2jqh and 2jqk, respectively.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wesley I. Sundquist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2, Suppleementary Figures 1-6 with Legends, Supplementary Discussion, Supplementary Methods and additional references. (PDF 2227 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stuchell-Brereton, M., Skalicky, J., Kieffer, C. et al. ESCRT-III recognition by VPS4 ATPases. Nature 449, 740–744 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing