Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nucleation and growth mechanism of ferroelectric domain-wall motion

Abstract

The motion of domain walls is critical to many applications involving ferroelectric materials, such as fast high-density non-volatile random access memory1. In memories of this sort, storing a data bit means increasing the size of one polar region at the expense of another, and hence the movement of a domain wall separating these regions. Experimental measurements of domain growth rates in the well-established ferroelectrics PbTiO3 and BaTiO3 have been performed, but the development of new materials has been hampered by a lack of microscopic understanding of how domain walls move2,3,4,5,6,7,8,9,10,11. Despite some success in interpreting domain-wall motion in terms of classical nucleation and growth models12,13,14,15,16, these models were formulated without insight from first-principles-based calculations, and they portray a picture of a large, triangular nucleus that leads to unrealistically large depolarization and nucleation energies5. Here we use atomistic molecular dynamics and coarse-grained Monte Carlo simulations to analyse these processes, and demonstrate that the prevailing models are incorrect. Our multi-scale simulations reproduce experimental domain growth rates in PbTiO3 and reveal small, square critical nuclei with a diffuse interface. A simple analytic model is also proposed, relating bulk polarization and gradient energies to wall nucleation and growth, and thus rationalizing all experimental rate measurements in PbTiO3 and BaTiO3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular dynamics simulations of nucleation on 180° domain walls.
Figure 2: Coarse-grained Monte Carlo simulations of polarization switching.
Figure 3: Landau-Ginzburg-Devonshire model of nucleation on 180° domain walls.

Similar content being viewed by others

References

  1. Scott, J. F. & Paz de Araujo, C. A. Ferroelectric memories. Science 246, 1400–1405 (1989)

    Article  ADS  CAS  Google Scholar 

  2. Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954)

    Article  ADS  CAS  Google Scholar 

  3. Stadler, H. L. & Zachmanidis, P. J. Nucleation and growth of ferroelectric domains in BaTiO3 at fields from 2 to 450 kV/cm. J. Appl. Phys. 34, 3255–3260 (1963)

    Article  ADS  CAS  Google Scholar 

  4. Ganpule, C. S. et al. Role of 90° domains in lead zirconate titanate thin films. Appl. Phys. Lett. 77, 292–294 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Tybell, T., Paruch, P., Giamarchi, T. & Triscone, J.-M. Domain wall creep in epitaxial ferroelectric Pb(Zr0. 2Ti0. 8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Li, J. et al. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004)

    Article  ADS  CAS  Google Scholar 

  8. Gruverman, A. et al. Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 082902 (2005)

    Article  ADS  Google Scholar 

  9. So, Y. W., Kim, D. J., Noh, T. W., Yoon, J.-G. & Song, T. K. Polarization switching kinetics of epitaxial Pb(Zr0. 4Ti0. 6)O3 thin films. Appl. Phys. Lett. 86, 092905 (2005)

    Article  ADS  Google Scholar 

  10. Stolichnov, I., Malin, L., Colla, E., Tagantsev, A. K. & Setter, N. Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films. Appl. Phys. Lett. 86, 012902 (2005)

    Article  ADS  Google Scholar 

  11. Grigoriev, A. et al. Nanosecond domain wall dynamics in ferroelectric Pb(Zr,Ti)O3 thin films. Phys. Rev. Lett. 96, 187601 (2006)

    Article  ADS  Google Scholar 

  12. Landauer, R. Electrostatic considerations in BaTiO3 domain formation during polarization reversal. J. Appl. Phys. 28, 227–234 (1957)

    Article  ADS  CAS  Google Scholar 

  13. Shur, V., Rumyantsev, E. & Makarov, S. Kinetics of phase transformations in real finite systems: application to switching in ferroelectrics. J. Appl. Phys. 84, 445–451 (1998)

    Article  ADS  CAS  Google Scholar 

  14. Hayashi, M. Kinetics of domain wall motion in ferroelectric switching. I. General formation. J. Phys. Soc. Jpn 33, 616–628 (1972)

    Article  ADS  Google Scholar 

  15. Miller, R. C. & Weinreich, G. Mechanism for the sidewise motion of 180° domain walls in barium titanate. Phys. Rev. 117, 1460–1466 (1960)

    Article  ADS  CAS  Google Scholar 

  16. Orihara, H., Hashimoto, S. & Ishibashi, Y. A theory of D-E hysterisis loop based on the Avrami model. J. Phys. Soc. Jpn 63, 1031–1035 (1994)

    Article  ADS  CAS  Google Scholar 

  17. Padilla, J., Zhong, W. & Vanderbilt, D. First-principles investigation of 180° domain walls in BaTiO3 . Phys. Rev. B 53, R5969–R5973 (1996)

    Article  ADS  CAS  Google Scholar 

  18. Grinberg, I., Cooper, V. R. & Rappe, A. M. Relationship between local structure and phase transitions of a disordered solid solution. Nature 419, 909–911 (2002)

    Article  ADS  CAS  Google Scholar 

  19. Shin, Y.-H., Cooper, V. R., Grinberg, I. & Rappe, A. M. Development of a bond-valence molecular-dynamics model for complex oxides. Phys. Rev. B 71, 054104 (2005)

    Article  ADS  Google Scholar 

  20. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992)

    Article  ADS  CAS  Google Scholar 

  21. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002)

    Article  ADS  Google Scholar 

  22. Savage, A. & Miller, R. C. Temperature dependence of the velocity of sidewise 180° domain-wall motion in BaTiO3 . J. Appl. Phys. 31, 1546–1549 (1960)

    Article  ADS  CAS  Google Scholar 

  23. Brown, I. D. & Wu, K. K. Empirical parameters for calculating cation-oxygen bond valences. Acta Crystallogr. B32, 1957–1959 (1976)

    Article  CAS  Google Scholar 

  24. Avrami, M. Kinetics of phase change. I. General theory. J. Phys. Chem. 7, 1103–1112 (1939)

    Article  CAS  Google Scholar 

  25. Kashchiev, D. Nucleation: Basic Theory with Applications Ch. 26 (Butterworth-Heinemann, Woburn, Massachusetts, 2000)

    Google Scholar 

  26. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials Ch. 4 (Clarendon Press, Oxford, 1977)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Office of Naval Research, the National Science Foundation and the Army Engineer Research and Development Center. Computational support was provided by the US Department of Defense. Y.-H.S. was supported by the Brain Korea 21 project in 2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Rappe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures S1-S5 and Legends, and Supplementary Tables S1-S2. (PDF 475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, YH., Grinberg, I., Chen, IW. et al. Nucleation and growth mechanism of ferroelectric domain-wall motion. Nature 449, 881–884 (2007). https://doi.org/10.1038/nature06165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06165

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing