Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Persistence of full glacial conditions in the central Pacific until 15,000 years ago


The magnitude of atmospheric cooling during the Last Glacial Maximum and the timing of the transition into the current interglacial period remain poorly constrained in tropical regions, partly because of a lack of suitable climate records1. Glacial moraines provide a method of reconstructing past temperatures, but they are relatively rare in the tropics. Here we present a reconstruction of atmospheric temperatures in the central Pacific during the last deglaciation on the basis of cosmogenic 3He ages of moraines and numerical modelling of the ice cap on Mauna Kea volcano, Hawaii—the only highland in the central Pacific on which moraines that formed during the last glacial period are preserved2. Our reconstruction indicates that the Last Glacial Maximum occurred between 19,000 and 16,000 years ago in this region and that temperatures at high elevations were about 7 °C lower than today during this interval. Glacial retreat began about 16,000 years ago, but temperatures were still about 6.5 °C lower than today until 15,000 years ago. When combined with estimates of sea surface temperatures in the central Pacific Ocean3, our reconstruction indicates that the lapse rate during the Last Glacial Maximum was higher than at present, which is consistent with the proposal that the atmosphere was drier at that time1,4. Furthermore, the persistence of full glacial conditions until 15,000 years ago is consistent with the relatively late and abrupt transition to warmer temperatures in Greenland5, indicating that there may have been an atmospheric teleconnection between the central Pacific and North Atlantic regions during the last deglaciation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the sampled glacial deposits (Mauna Kea, Hawaii, central Pacific).
Figure 2: Comparison of the Mauna Kea glacial chronology with other palaeoclimate proxies since 24 kyr  bp.
Figure 3: Modelling of the Mauna Kea ice cap since the local Last Glacial Maximum, and palaeoclimatic reconstruction.


  1. Farrera, I. et al. Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake levels and geochemistry. Clim. Dyn. 15, 823–856 (1999)

    Article  Google Scholar 

  2. Porter, S. C. Hawaiian glacial ages. Quat. Res. 12, 161–187 (1979)

    Article  ADS  Google Scholar 

  3. Lee, K. E., Slowey, N. C. & Herbert, T. D. Glacial sea surface temperatures in the subtropical North Pacific: A comparison of U-K37′, δ18O, and foraminiferal assemblage temperature estimates. Paleoceanography 16, 268–279 (2001)

    Article  ADS  Google Scholar 

  4. Kageyama, M., Harrison, S. P. & Abe-Ouchi, A. The depression of tropical snowlines at the last glacial maximum: What can we learn from climate model experiments? Quaternary Int. 138, 202–219 (2005)

    Article  ADS  Google Scholar 

  5. Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Wolfe, E. W., Wise, W. S. & Dalrymple, G. B. The geology and petrology of Mauna Kea volcano, Hawaii—a study of postshield volcanism. Prof. Pap. US Geol. Surv. 1557. (1997)

  7. Dorn, R. I. et al. Glacial chronology. Res. Explor. 7, 456–471 (1991)

    Google Scholar 

  8. Gosse, J. C. & Phillips, F. M. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. 20, 1475–1560 (2001)

    Article  ADS  Google Scholar 

  9. Trull, T. W. & Kurz, M. D. Experimental measurements of 3He and 4He mobility in olivine and clinopyroxene at magmatic temperatures. Geochim. Cosmochim. Acta 57, 1313–1324 (1993)

    Article  ADS  CAS  Google Scholar 

  10. Blard, P.-H. et al. Cosmogenic 3He production rates revisited from evidences of grain size dependent release of matrix sited helium. Earth Planet. Sci. Lett. 247, 222–234 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Reimer, P. J. et al. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 1029–1058 (2004)

    Article  CAS  Google Scholar 

  12. Peng, L. & King, J. W. A late quaternary geomagnetic secular variation record from Lake Waiau, Hawaii, and the question of the Pacific nondipole low. J. Geophys. Res. Solid Earth 97, 4407–4424 (1992)

    Article  Google Scholar 

  13. Schaefer, J. M. et al. Near-synchronous interhemispheric termination of the last glacial maximum in mid-latitudes. Science 312, 1510–1513 (2006)

    Article  ADS  CAS  Google Scholar 

  14. Vázquez-Selem, L. & Phillips, F. M. in Program and Abstracts of the 15th Biennial Meeting, American Quaternary Association, AMQUA 1998, Northern Hemisphere-Southern Hemisphere Interconnections (5–7 September 1998; Puerto Vallarta, México), p. 174

  15. Smith, J. A., Seltzer, G. O., Farber, D. L., Rodbell, D. T. & Finkel, R. C. Early local last glacial maximum in the tropical Andes. Science 308, 678–681 (2005)

    Article  ADS  CAS  Google Scholar 

  16. Harper, J. T. & Humphrey, N. F. High altitude Himalayan climate inferred from glacial ice flux. Geophys. Res. Lett. 30, 1764–1767 (2003)

    Article  ADS  Google Scholar 

  17. Hock, R. A distributed temperature-index ice and snowmelt model including potential direct solar radiation. J. Glaciol. 45, 101–111 (1999)

    Article  ADS  Google Scholar 

  18. Porter, S. C. Pleistocene snowlines and glaciation of the Hawaiian Islands. Quaternary Int. 138, 118–128 (2005)

    Article  ADS  Google Scholar 

  19. Ludwig, K. R., Szabo, B. J., Moore, J. G. & Simmons, K. R. Crustal subsidence rate off Hawaii determined from 234U/238U ages of drowned coral reefs. Geology 19, 171–174 (1991)

    Article  ADS  Google Scholar 

  20. Hotchkiss, S. & Juvik, J. O. A. Late-Quaternary pollen record from Ka’au crater, O’ahu, Hawai’i. Quat. Res. 52, 115–128 (1999)

    Article  Google Scholar 

  21. Hostetler, S. W. & Clark, P. U. Tropical climate at the last glacial maximum inferred from glacier mass-balance modeling. Science 290, 1747–1750 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Sicart, J.-E., Wagnon, P. & Ribstein, P. Atmospheric controls of the heat balance of Zongo Glacier (16°S, Bolivia). J. Geophys. Res. Atmos. 110 doi: 10.1029/2004JD005732 (2005)

  23. Francou, B., Vuille, M., Wagnon, P., Mendoza, J. & Sicart, J. E. Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J. Geophys. Res. Atmos. 108 doi: 10.1029/2002JD002959 (2003)

  24. Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115 (2003)

    Article  ADS  Google Scholar 

  25. Kitoh, A., Murakami, S. & Koide, H. A simulation of the last glacial maximum with a coupled atmosphere–ocean GCM. Geophys. Res. Lett. 28, 2221–2224 (2001)

    Article  ADS  Google Scholar 

  26. Lee, K. E. & Slowey, N. C. Cool surface waters of the subtropical North Pacific Ocean during the last glacial. Nature 397, 512–514 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Hill, T. M. et al. Pre-Bølling warming in Santa Barbara Basin, California: surface and intermediate water records of early deglacial warmth. Quat. Sci. Rev. 25, 2835–2845 (2006)

    Article  ADS  Google Scholar 

  28. Kiefer, T. & Kienast, M. Patterns of deglacial worming in the Pacific Ocean: a review with emphasis on the time interval of Heinrich event 1. Quat. Sci. Rev. 24, 1063–1081 (2005)

    Article  ADS  Google Scholar 

  29. Johnsen, S. J., Dansgaard, W., Clausen, H. B. & Langway, C. C. Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature 235, 429–434 (1972)

    Article  ADS  CAS  Google Scholar 

  30. Mikolajewicz, U., Crowley, T. J., Schiller, A. & Voss, R. Modelling teleconnections between the North Atlantic and North Pacific during the Younger Dryas. Nature 387, 384–387 (1997)

    Article  ADS  CAS  Google Scholar 

  31. Dunne, J., Elmore, D. & Muzikar, P. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces. Geomorphology 27, 3–11 (1999)

    Article  ADS  Google Scholar 

  32. Masarik, J. & Wieler, R. Production rates of cosmogenic nuclides in boulders. Earth Planet. Sci. Lett. 216, 201–208 (2003)

    Article  ADS  CAS  Google Scholar 

  33. Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 105, 23753–23759 (2000)

    Article  CAS  Google Scholar 

  34. Dunai, T. J. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth Planet. Sci. Lett. 193, 197–212 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Carcaillet, J. T., Bourles, D. L. & Thouveny, N. Geomagnetic dipole moment and 10Be production rate intercalibration from authigenic 10Be/9Be for the last 1.3 Ma. Geochem. Geophys. Geosyst. 5 doi: 10.1029/2003GC000641 (2004)

  36. Lejeune, Y. et al. Melting of snow cover in a tropical mountain environment: processes and melting. J. Hydrometeorol. (in the press)

  37. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

    Article  ADS  Google Scholar 

  38. Paillard, D., Labeyrie, L. & Yiou, F. Macintosh program performs time-series analysis. Eos 77, 379 (1996)

    Article  ADS  Google Scholar 

  39. NOAA. Radiosonde Database Access〉 (2007)

  40. Johannesson, T., Sigurdsson, O., Laumann, T. & Kennett, M. Degree-day glacier mass-balance modeling with applications to glaciers in Iceland, Norway And Greenland. J. Glaciol. 41, 345–358 (1995)

    Article  ADS  Google Scholar 

  41. Schuler, T. V. et al. Distributed mass-balance and climate sensitivity modelling of Engabreen, Norway. Ann. Glaciol. 42, 395–401 (2005)

    Article  ADS  Google Scholar 

Download references


We thank E. Bard and S. Kidder for advice on the manuscript; S. Rowland and F. Trusdell for their assistance in the field; N. Humphrey for sharing his ice-flux Matlab code; G. Leduc, C. Vincent, R. Hock, D. Paillard, N. Thouveny, S. Sépulcre and G. Brocard for discussions that helped to improve glacial modelling and palaeoclimatic interpretations; and L. Zimmerman and B. Tibari for their analytical assistance in the Centre de Recherches Pétrographiques et Géochimiques (CRPG) noble gases laboratory. We thank the State of Hawaii for delivering sampling permits. Financial support was provided by the French INSU programme ‘Relief de la Terre’.

Author Contributions P.-H.B. and J.L. conducted the field work in Hawaii, numerical modelling, data interpretation and paper writing. P.-H.B. and R.P. performed the cosmogenic 3He analyses at CRPG (Nancy). P.W. provided ablation and climatic data from the Zongo glacier and helped in developing the glacier mass-balance model. D.B. participated in interpreting the cosmogenic data.

Author information

Authors and Affiliations


Corresponding author

Correspondence to P.-H. Blard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Notes, Supplementary Table S1, Supplementary Figures S1- S7 with Legends and additional references. (PDF 300 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blard, PH., Lavé, J., Pik, R. et al. Persistence of full glacial conditions in the central Pacific until 15,000 years ago. Nature 449, 591–594 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing