Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A link between large mantle melting events and continent growth seen in osmium isotopes


Although Earth’s continental crust is thought to have been derived from the mantle, the timing and mode of crust formation have proven to be elusive issues. The area of preserved crust diminishes markedly with age1,2, and this can be interpreted as being the result of either the progressive accumulation of new crust3 or the tectonic recycling of old crust4. However, there is a disproportionate amount of crust of certain ages1,2, with the main peaks being 1.2, 1.9, 2.7 and 3.3 billion years old; this has led to a third model in which the crust has grown through time in pulses1,2,5,6,7, although peaks in continental crust ages could also record preferential preservation. The 187Re–187Os decay system is unique in its ability to track melt depletion events within the mantle and could therefore potentially link the crust and mantle differentiation records. Here we employ a laser ablation technique to analyse large numbers of osmium alloy grains to quantify the distribution of depletion ages in the Earth’s upper mantle. Statistical analysis of these data, combined with other samples of the upper mantle, show that depletion ages are not evenly distributed but cluster in distinct periods, around 1.2, 1.9 and 2.7 billion years. These mantle depletion events coincide with peaks in the generation of continental crust and so provide evidence of coupled, global and pulsed mantle–crust differentiation, lending strong support to pulsed models of continental growth by means of large-scale mantle melting events6.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Continental crust zircon ages compared with ages recorded in mantle samples.
Figure 2: Assessment of whether age peaks are due to mantle heterogeneity.
Figure 3: Probability that the secondary age peaks (Fig. 1) match by random chance as the number of matching localities increases.


  1. Gastil, G. The distribution of mineral dates in space and time. Am. J. Sci. 258, 1–35 (1960)

    Article  ADS  CAS  Google Scholar 

  2. Hurley, P. M. & Rand, J. R. Pre-drift continental nuclei. Science 164, 1229–1242 (1969)

    Article  ADS  CAS  Google Scholar 

  3. Allègre, C. J. & Rousseau, D. The growth of the continents through geological time studied by Nd isotope analysis of shales. Earth Planet. Sci. Lett. 67, 19–34 (1984)

    Article  ADS  Google Scholar 

  4. Armstrong, R. L. Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil. Trans. R. Soc. Lond. A 301, 443–472 (1981)

    Article  ADS  CAS  Google Scholar 

  5. Goldstein, S. L., Arndt, N. T. & Stallard, R. F. The history of a continent from U–Pb ages of zircons from Orinoco River sand and Sm–Nd isotopes in Orinoco basin river sediments. Chem. Geol. 139, 271–286 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Condie, K. C. Episodic continental growth and supercontinents. Earth Planet. Sci. Lett. 163, 97–108 (1998)

    Article  ADS  CAS  Google Scholar 

  7. Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A. & Kinny, P. D. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439, 580–583 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Pearson, D. G. in Mantle Petrology: Field Observations and High Pressure Experimentation (eds Fei, Y., Bertka, C. M. & Mysen, B. O.) 57–78 (Spec. Pub. Geochem. Soc. no. 6, Houston, TX, 1999)

    Google Scholar 

  9. Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical and chronological characteristics of continental mantle. Rev. Geophys. 43, 1–24 (2005)

    Article  Google Scholar 

  10. Brandon, A. D., Snow, J. E., Walker, R. J., Morgan, J. W. & Mock, T. D. 190Pt–186Os and 187Re–187Os systematics of abyssal peridotites. Earth Planet. Sci. Lett. 177, 319–355 (2000)

    Article  ADS  CAS  Google Scholar 

  11. Harvey, J. et al. Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet. Sci. Lett. 244, 606–621 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Meibom, A. & Frei, R. Evidence for an ancient osmium isotopic reservoir in Earth. Science 296, 516–518 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Meibom, A. et al. Re-Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth’s upper mantle. Nature 419, 705–708 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Harris, D. C. & Cabri, L. J. Nomenclature of platinum-group-alloys: Review and revision. Can. Mineral. 29, 231–237 (1991)

    CAS  Google Scholar 

  15. Brenker, F. E., Meibom, A. & Frei, R. On the formation of peridotite-derived Os-rich PGE alloys. Am. Mineral. 88, 1731–1740 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007)

    Article  ADS  CAS  Google Scholar 

  17. Alard, O. et al. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature 436, 1005–1008 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Mateev, S. & Balhaus, C. Role of water in the origin of podiform chromitite deposits. Earth Planet. Sci. Lett. 203, 235–243 (2002)

    Article  ADS  Google Scholar 

  19. Walker, R. J. et al. Comparative 187Re–187Os systematics of chondrites: implications regarding early solar system processes. Geochim. Cosmochim. Acta 66, 4187–4201 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Sambridge, M. S. & Compston, W. Mixture modelling of multi-component data sets with application to ion-probe zircon ages. Earth Planet. Sci. Lett. 128, 373–390 (1994)

    Article  ADS  CAS  Google Scholar 

  21. Jasra, A., Stephens, D. A., Gallagher, K. & Holmes, C. C. Bayesian mixture modelling in geochronology via Markov chain Monte Carlo. Math. Geol. 38, 269–300 (2006)

    Article  CAS  Google Scholar 

  22. Parkinson, I. J., Hawkesworth, C. J. & Cohen, A. S. Ancient mantle in a modern arc: Osmium isotopes in Izu–Bonin–Mariana forearc peridotites. Science 281, 2011–2013 (1998)

    Article  ADS  CAS  Google Scholar 

  23. Parman, S. W. Helium isotopic evidence for episodic mantle melting and crustal growth. Nature 446, 900–903 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Hattori, K. & Hart, S. R. Osmium-isotope ratios of platinum-group minerals associated with ultramafic intrusions; Os-isotopic evolution of the oceanic mantle. Earth Planet. Sci. Lett. 107, 499–514 (1991)

    Article  ADS  CAS  Google Scholar 

  25. Walker, R. J. et al. 187Os–186Os systematics of Os–Ir–Ru alloy grains from southwestern Oregon. Earth Planet. Sci. Lett. 230, 211–226 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Brandon, A. D., Walker, R. J. & Puchtel, I. Platinum–osmium isotope evolution of the Earth’s mantle: Constraints from chondrites and Os-rich alloys. Geochim. Cosmochim. Acta 70, 2093–2103 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Shi, R. D. et al. Multiple events in the Neo-Tethyan oceanic upper mantle: evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2007.05.044 (2007)

  28. Griffin, W. L., Graham, S., O’Reilly, S. Y. & Pearson, N. J. Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites. Chem. Geol. 208, 89–118 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Griffin, W. L., Spetsius, Z. V., Pearson, N. J. & O’Reilly, S. Y. In situ Re–Os analysis of sulfide inclusions in kimberlitic olivine: New constraints on depletion events in the Siberian lithosphere. Geochem. Geophys. Geosyst. 3 1069 doi: 10.1029/2001GC000287 (2002)

    ADS  Google Scholar 

  30. Ludwig, K. R. Isoplot. Program and documentation, version 2.95. Revised edition of US Open-File report. 91–445 (1997)

Download references


We thank P. Nixon, the British Museum of Natural History, C. Francis of the Harvard Museum and the Tasmanian Geological Survey for the supply of PGAs used in this study, A. Brandon for making the paper more robust, L. Jaques for advice on sourcing PGAs, and M. Goldstein and K. Gallagher for guidance on statistical approaches.

Author Contributions All authors contributed equally to this study.

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. G. Pearson.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-13 with Legends, Supplementary Methods and Supplementary Tables 1-5. (PDF 403 kb)

Supplementary Data

The file contains Supplementary Data giving measured 187Os/188Os ratios and in-run precision together with Re depletion ages (calculated relative to the Ordinary Chondrite average – Ref 19, Main Text). (XLS 118 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pearson, D., Parman, S. & Nowell, G. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449, 202–205 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing