Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cavity QED with a Bose–Einstein condensate

Abstract

Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing1. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave2,3 and optical resonators4. To meet the challenges posed by quantum state engineering5 and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity6,7,8. However, the tremendous degree of control over atomic gases achieved with Bose–Einstein condensation9 has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose–Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication10,11,12 to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions13,14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental situation.
Figure 2: Cavity transmission for the σ + and σ - polarization component.
Figure 3: Energy spectrum of the coupled BEC–cavity system.
Figure 4: Shift of the lower resonance of the coupled BEC–cavity system from the bare atomic resonance.

References

  1. 1

    van Enk, S. J., Kimble, H. J. & Mabuchi, H. Quantum information processing in cavity-QED. Quantum Inform. Process. 3, 75–90 (2004)

    Article  Google Scholar 

  2. 2

    Raimond, J. M., Brune, M. & Haroche, S. Colloquium: manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3

    Walther, H. Quantum phenomena of single atoms. Adv. Chem. Phys. 122, 167–197 (2002)

    CAS  Google Scholar 

  4. 4

    Kimble, H. J. Strong interactions of single atoms and photons in cavity QED. Phys. Scr. T76, 127–137 (1998)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Nußmann, S. et al. Vacuum-stimulated cooling of single atoms in three dimensions. Nature Phys. 1, 122–125 (2005)

    ADS  Article  Google Scholar 

  8. 8

    Sauer, J. A., Fortier, K. M., Chang, M. S., Hamley, C. D. & Chapman, M. S. Cavity QED with optically transported atoms. Phys. Rev. A. 69, 051804 (2004)

    ADS  Article  Google Scholar 

  9. 9

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Pellizzari, T., Gardiner, S. A., Cirac, J. I. & Zoller, P. Decoherence, continuous observation, and quantum computing: a cavity QED model. Phys. Rev. Lett. 75, 3788–3791 (1995)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Horak, P., Barnett, S. M. & Ritsch, H. Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities. Phys. Rev. A. 61, 033609 (2000)

    ADS  Article  Google Scholar 

  14. 14

    Lewenstein, M. et al. Travelling to exotic places with ultracold atoms. In Atomic Physics 20 Vol. 869 of XX International Conference on Atomic Physics (ICAP) 2006 201–211 (American Institute of Physics, New York, 2006)

    Google Scholar 

  15. 15

    Jaynes, E. & Cummings, F. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)

    Article  Google Scholar 

  16. 16

    Tavis, M. & Cummings, F. W. Exact solution for an n-molecule radiation-field hamiltonian. Phys. Rev. 170, 379–384 (1968)

    ADS  Article  Google Scholar 

  17. 17

    Leslie, S., Shenvi, N., Brown, K. R., Stamper Kurn, D. M. & Whaley, K. B. Transmission spectrum of an optical cavity containing N atoms. Phys. Rev. A 69, 043805 (2004)

    ADS  Article  Google Scholar 

  18. 18

    Raizen, M. G., Thompson, R. J., Brecha, R. J., Kimble, H. J. & Carmichael, H. J. Normal-mode splitting and linewidth averaging for two-state atoms in an optical cavity. Phys. Rev. Lett. 63, 240–243 (1989)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Tuchman, A. K. et al. Normal-mode splitting with large collective cooperativity. Phys. Rev. A. 74, 053821 (2006)

    ADS  Article  Google Scholar 

  20. 20

    Colombe, Y. et al. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Preprint at 〈http://arxiv.org/abs/0706.1390〉 (2007)

  21. 21

    Mekhov, I. B., Maschler, C. & Ritsch, H. Probing quantum phases of ultracold atoms in optical lattices by transmission spectra in cavity quantum electrodynamics. Nature Phys. 3, 319–323 (2007)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Correlations and counting statistics of an atom laser. Phys. Rev. Lett. 95, 090404 (2005)

    ADS  Article  Google Scholar 

  23. 23

    Slama, S., Bux, S., Krenz, G., Zimmermann, C. & Courteille, P. W. Superradiant Rayleigh scattering and collective atomic recoil lasing in a ring cavity. Phys. Rev. Lett. 98, 053603 (2007)

    CAS  ADS  Article  Google Scholar 

  24. 24

    Murch, K. W., Moore, K. L., Gupta, S. & Stamper Kurn, D. M. Measurement of intracavity quantum fluctuations of light using an atomic fluctuation bolometer. Preprint at 〈http://arxiv.org/abs/0706.1005〉 (2007)

  25. 25

    Gupta, S., Moore, K. L., Murch, K. W. & Stamper Kurn, D. M. Cavity nonlinear optics at low photon numbers from collective atomic motion. Preprint at 〈http://arxiv.org/abs/0706.1052〉 (2007)

  26. 26

    Öttl, A., Ritter, S., Köhl, M. & Esslinger, T. Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases. Rev. Sci. Instrum. 77, 063118 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Kuhr, S. et al. Deterministic delivery of a single atom. Science 293, 278–280 (2001)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Meiser, D. & Meystre, P. Superstrong coupling regime of cavity quantum electrodynamics. Phys. Rev. A. 74, 065801 (2006)

    ADS  Article  Google Scholar 

  29. 29

    Moore, M. G., Zobay, O. & Meystre, P. Quantum optics of a Bose-Einstein condensate coupled to a quantized light field. Phys. Rev. A. 60, 1491–1506 (1999)

    CAS  ADS  Article  Google Scholar 

  30. 30

    Daley, A. J., Fedichev, P. O. & Zoller, P. Single-atom cooling by superfluid immersion: a nondestructive method for qubits. Phys. Rev. A. 69, 022306 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Öttl for early contributions to the experiment, R. Jördens and A. Frank for developing the direct digital synthesis generators used for the optical transport, H. Ritsch and A. Imamoglu for discussions and OLAQUI and QSIT for funding. T.B. acknowledges funding by an EU Marie Curie fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tilman Esslinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brennecke, F., Donner, T., Ritter, S. et al. Cavity QED with a Bose–Einstein condensate. Nature 450, 268–271 (2007). https://doi.org/10.1038/nature06120

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing