Abstract
The cytokine transforming growth factor-β (TGF-β) is an important negative regulator of adaptive immunity1,2,3. TGF-β is secreted by cells as an inactive precursor that must be activated to exert biological effects4, but the mechanisms that regulate TGF-β activation and function in the immune system are poorly understood. Here we show that conditional loss of the TGF-β-activating integrin αvβ8 on leukocytes causes severe inflammatory bowel disease and age-related autoimmunity in mice. This autoimmune phenotype is largely due to lack of αvβ8 on dendritic cells, as mice lacking αvβ8 principally on dendritic cells develop identical immunological abnormalities as mice lacking αvβ8 on all leukocytes, whereas mice lacking αvβ8 on T cells alone are phenotypically normal. We further show that dendritic cells lacking αvβ8 fail to induce regulatory T cells (TR cells) in vitro, an effect that depends on TGF-β activity. Furthermore, mice lacking αvβ8 on dendritic cells have reduced proportions of TR cells in colonic tissue. These results suggest that αvβ8-mediated TGF-β activation by dendritic cells is essential for preventing immune dysfunction that results in inflammatory bowel disease and autoimmunity, effects that are due, at least in part, to the ability of αvβ8 on dendritic cells to induce and/or maintain tissue TR cells.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Shull, M. M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992)
Marie, J. C., Liggitt, D. & Rudensky, A. Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006)
Li, M. O., Sanjabi, S. & Flavell, R. A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006)
Annes, J. P., Munger, J. S. & Rifkin, D. B. Making sense of latent TGFβ activation. J. Cell Sci. 116, 217–224 (2003)
Huang, X. Z. et al. Inactivation of the integrin β6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133, 921–928 (1996)
Munger, J. S. et al. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999)
Mu, D. et al. The integrin αvβ8 mediates epithelial homeostasis through MT1–MMP-dependent activation of TGF-β1. J. Cell Biol. 157, 493–507 (2002)
Yang, Z. et al. Absence of integrin-mediated TGFβ1 activation in vivo recapitulates the phenotype of TGFβ1-null mice. J. Cell Biol. 176, 787–793 (2007)
Zhu, J. et al. β8 integrins are required for vascular morphogenesis in mouse embryos. Development 129, 2891–2903 (2002)
Proctor, J. M., Zang, K., Wang, D., Wang, R. & Reichardt, L. F. Vascular development of the brain requires β8 integrin expression in the neuroepithelium. J. Neurosci. 25, 9940–9948 (2005)
de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003)
Gorelik, L. & Flavell, R. A. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12, 171–181 (2000)
Kim, B. G. et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 441, 1015–1019 (2006)
Bohr, U. R. et al. Prevalence and spread of enterohepatic Helicobacter species in mice reared in a specific-pathogen-free animal facility. J. Clin. Microbiol. 44, 738–742 (2006)
Taylor, N. S., Xu, S., Nambiar, P., Dewhirst, F. E. & Fox, J. G. Enterohepatic Helicobacter species are prevalent in mice obtained from commercial and academic institutions in Asia, Europe, and North America. J. Clin. Microbiol. 45, 2166–2172 (2007)
Whary, M. T. & Fox, J. G. Detection, eradication, and research implications of Helicobacter infections in laboratory rodents. Lab Anim. (NY) 35, 25–36 (2006)
Strober, W., Fuss, I. & Mannon, P. The fundamental basis of inflammatory bowel disease. J. Clin. Invest. 117, 514–521 (2007)
Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001)
Caton, M., L, M. R. & Reizis, B. Notch–RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007)
Sakaguchi, S. et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212, 8–27 (2006)
Chen, W. et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003)
Nakamura, K. et al. TGF-β1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J. Immunol. 172, 834–842 (2004)
Fahlen, L. et al. T cells that cannot respond to TGF-β escape control by CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 737–746 (2005)
Marie, J. C., Letterio, J. J., Gavin, M. & Rudensky, A. Y. TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005)
Fontenot, J. D. et al. Regulatory T cell lineage specification by the forkhead transcription factor Foxp3. Immunity 22, 329–341 (2005)
Bluestone, J. A. & Abbas, A. K. Natural versus adaptive regulatory T cells. Nature Rev. Immunol. 3, 253–257 (2003)
Bluestone, J. A. & Tang, Q. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr. Opin. Immunol. 17, 638–642 (2005)
Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006)
Lefrancois, L. & Lycke, N. Isolation of mouse small intestine intraepithelial lymphocytes, Peyer’s patch, and lamina propria cells. Curr. Protocols Immunol. Unit 3.19. doi: 10.1002/0471142735.im0319s17 (2001)
Abe, M. et al. An assay for transforming growth factor-β using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Anal. Biochem. 216, 276–284 (1994)
Acknowledgements
We thank D. Kioussis for providing the Vav1-Cre mice and A. Rudensky for providing the GFP–Foxp3 mice. This work was supported by grants from the National Heart, Lung and Blood Institute (to D.S.), the National Institute of Allergy and Infectious Diseases (to J.A.B and B.R.) and funds from the Sandler Program for Asthma Research (to B.R.). M.A.T. was the recipient of an American Lung Association Research Fellowship.
Author Contributions M.A.T. performed all of the experiments described and wrote most of the manuscript; B.R. generated the CD11c-Cre mice and contributed to the design and interpretation of studies using those mice; A.C.M. contributed to the studies of colonic inflammation, colonic TR cells and designed and performed all of the qPCR studies described; E.M. helped design, perform and interpret the in vitro TR cell induction assays; Q.T. helped to design, perform and interpret the studies analysing the nature of the immunological defects described; J.M.P. generated the conditional Itgb8 knockout mice and helped in the design and interpretation of genotyping assays and crosses to Cre-expressing lines; Y.W., X.B. and X.H. helped in the design, performance and interpretation of all of the studies of tissue morphology; L.F.R. oversaw the generation of the conditional Itgb8 knockout mice and contributed to the design and interpretation of studies using these animals; J.A.B. contributed to the design and interpretation of the studies characterizing the immunological abnormalities seen and analysing the contribution of TR cells; D.S. oversaw the design and interpretation of all studies described and oversaw writing of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.
Supplementary information
Supplementary Figures
This file contains Supplementary Figures 1-7 with Legends. (PDF 680 kb)
Rights and permissions
About this article
Cite this article
Travis, M., Reizis, B., Melton, A. et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007). https://doi.org/10.1038/nature06110
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature06110
This article is cited by
-
APOE4 impairs the microglial response in Alzheimer’s disease by inducing TGFβ-mediated checkpoints
Nature Immunology (2023)
-
Overcoming TGFβ-mediated immune evasion in cancer
Nature Reviews Cancer (2022)
-
Fungal sensing by dectin-1 directs the non-pathogenic polarization of TH17 cells through balanced type I IFN responses in human DCs
Nature Immunology (2022)
-
Blocking GARP-mediated activation of TGF-β1 did not alter innate or adaptive immune responses to bacterial infection or protein immunization in mice
Cancer Immunology, Immunotherapy (2022)
-
Immune Inhibitory Properties and Therapeutic Prospects of Transforming Growth Factor-Beta and Interleukin 10 in Autoimmune Hepatitis
Digestive Diseases and Sciences (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.