Hadean diamonds in zircon from Jack Hills, Western Australia


Detrital zircons more than 4 billion years old from the Jack Hills metasedimentary belt, Yilgarn craton, Western Australia, are the oldest identified fragments of the Earth’s crust1,2 and are unique in preserving information on the earliest evolution of the Earth. Inclusions of quartz, K-feldspar and monazite in the zircons3, in combination with an enrichment of light rare-earth elements4,5 and an estimated low zircon crystallization temperature6, have previously been used as evidence for early recycling of continental crust, leading to the production of granitic melts in the Hadean era. Here we present the discovery of microdiamond inclusions in Jack Hills zircons with an age range from 3,058 ± 7 to 4,252 ± 7 million years. These include the oldest known diamonds found in terrestrial rocks, and introduce a new dimension to the debate on the origin of these zircons and the evolution of the early Earth6,7,8,9,10. The spread of ages indicates that either conditions required for diamond formation were repeated several times during early Earth history or that there was significant recycling of ancient diamond. Mineralogical features of the Jack Hills diamonds—such as their occurrence in zircon, their association with graphite and their Raman spectroscopic characteristics—resemble those of diamonds formed during ultrahigh-pressure metamorphism and, unless conditions on the early Earth were unique, imply a relatively thick continental lithosphere and crust–mantle interaction at least 4,250 million years ago.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Representative Raman spectra of diamond and graphite inclusions in zircon from Jack Hills.
Figure 2: Raman data from diamond inclusions in the Jack Hill zircons, from diamond polishing particles, and from diamonds of different geological origin.
Figure 3: Mineralogical features of diamond inclusions in Jack Hills zircon samples. a–c, Grain JH15-142; d–f, grain JH3-20.


  1. 1

    Compston, W. & Pidgeon, R. T. Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321, 766–769 (1986)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O. & Compston, W. The Earth’s oldest known crust: a geochronological and geochemical study of 2900–4200 Ma old zircons from Mt Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281–1300 (1992)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Peck, W. H., Valley, J. W., Wilde, S. A. & Graham, C. M. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the Early Archaean. Geochim. Cosmochim. Acta 65, 4215–4229 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Cavosie, A. J., Valley, J. W. & Wilde, S. A. E. I. M. F. Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Watson, E. B. & Harrison, T. M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–844 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Harrison, T. M. et al. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Valley, J. W., Cavosie, A. J., Fu, B., Peck, W. H. & Wilde, S. A. Comment on ‘‘Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga’’. Science 312, 1139a (2006)

    Article  Google Scholar 

  9. 9

    Glikson, A. Comment on ‘‘Zircon thermometer reveals minimum melting conditions on earliest Earth’’ I. Science 311, 779a (2006)

    Article  Google Scholar 

  10. 10

    Nutman, A. P. Comment on ‘‘Zircon thermometer reveals minimum melting conditions on earliest Earth’’ II. Science 311, 779b (2006)

    Article  Google Scholar 

  11. 11

    Compston, W., Williams, I. S. & Meyer, C. U-Pb geochronology of zircons from Lunar Breccia 73217 using a sensitive high mass-resolution ion microprobe. J. Geophys. Res. 89, 525–534 (1984)

    CAS  Article  Google Scholar 

  12. 12

    Kennedy, A. K. & de Laeter, J. R. The performance characteristics of the WA SHRIMP II ion microprobe. US Geol. Surv. Circ. 1107, 166 (1994)

    Google Scholar 

  13. 13

    Gillet, P., Hemley, R. J. & McMillan, P. F. Vibrational properties of minerals at high pressures and temperatures. Rev. Min. 37, 525–590 (1998)

    CAS  Google Scholar 

  14. 14

    Nachal'naya, T. A. & Andreyev, V. D. Shift of the frequency and Stokes-anti-Stokes ratio of Raman spectra from diamond powders. Diamond Related Mater. 3, 1325–1328 (1994)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Knight, D. S. & White, W. B. Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385–393 (1989)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Frondel, C. & Marvin, U. B. Lonsdaleite, a new hexagonal polymorph of diamond. Nature 214, 587–589 (1967)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Pasteris, J. D. & Wopenka, B. Raman spectra of graphite as indicators of degree of metamorphism. Can. Mineral. 29, 1–9 (1991)

    CAS  Google Scholar 

  18. 18

    Nemchin, A. A., Pidgeon, R. T. & Whitehouse, M. J. Re-evaluation of the origin and evolution of >4.2 Ga zircons from the Jack Hills metasedimentary rocks. Earth Planet. Sci. Lett. 244, 218–233 (2006)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Geisler, T., Schaltegger, U. & Tomaschek, F. Re-equilibration of zircon in aqueous fluids and melts. Elements 3, 45–51 (2007)

    Article  Google Scholar 

  20. 20

    Pidgeon, R. T. & Nemchin, A. A. High abundance of early Archaean grains and the age distribution of detrital zircons in a sillimanite-bearing quartzite from Mt Narryer, Western Australia. Precambr. Res. 150, 201–220 (2006)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. Origin of diamonds in old enriched mantle. Nature 310, 198–202 (1984)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Haggerty, S. E. A diamond triology: superplumes, supercontinents, and supernovae. Science 285, 851–860 (1999)

    ADS  CAS  Article  Google Scholar 

  23. 23

    De Corte, K. et al. Diamond growth during ultrahigh-pressure metamorphism of the Kokchtav Massif, northern Kazakhstan. Island Arc 9, 428–438 (2000)

    CAS  Article  Google Scholar 

  24. 24

    Dobrzhinetskaya, L. F. et al. Focused ion beam technique and transmission electron microscope studies of microdiamonds from the Saxonian Erzgebirge, Germany. Earth Planet. Sci. Lett. 210, 399–410 (2003)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Dobrzhinetskaya, L. F. et al. Synchrotron infrared and Raman spectroscopy of microdiamonds from Erzgebirge, Germany. Earth Planet. Sci. Lett. 248, 340–349 (2006)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Perraki, M., Proyer, A., Mposkos, E., Kaindl, R. & Hoinkes, G. Raman micro-spectroscopy on diamond, graphite and other carbon polymorphs from the ultrahigh-pressure metamorphic Kimi Complex of the Rhodope Metamorphic Province, NE Greece. Earth Planet. Sci. Lett. 241, 672–685 (2006)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Mposkos, E. & Krohe, A. Pressure-temperature-deformation paths of closely associated ultra-high-pressure (diamond-bearing) crustal and mantle rocks of the Kimi complex: implications for the tectonic history of the Rhodope Mountains, Greece. Can. J. Earth Sci. 43, 1755–1776 (2006)

    ADS  Article  Google Scholar 

  28. 28

    Korsakov, A. V., Vandenabeele, P. & Theunissen, K. Discrimination of metamorphic diamond populations by Raman spectroscopy (Kokchetav, Kazakhstan). Spectrochim. Acta A 61, 2378–2385 (2005)

    ADS  Article  Google Scholar 

  29. 29

    Heaney, P. J., Vicenzi, E. P. & De, S. Strange diamonds: The mysterious origins of carbonado and framesite. Elements 1, 85–89 (2005)

    CAS  Article  Google Scholar 

  30. 30

    Amelin, Y., Lee, D.-C., Halliday, A. N. & Pidgeon, R. T. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–255 (1999)

    ADS  CAS  Article  Google Scholar 

  31. 31

    El Goresy, A. et al. In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany. Am. Miner. 86, 611–621 (2001)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Tanabe, K. & Hiraishi, J. Correction of finite slit width effects on Raman line widths. Spectrochim. Acta A 36, 341–344 (1980)

    ADS  Article  Google Scholar 

  33. 33

    Pidgeon, R. T., Furfaro, D., Kennedy, A. K., Nemchin, A. A. & van Bronswjk, W. Calibration of zircon standards for the Curtin SHRIMP. US Geol. Surv. Circ. 1107, 251 (1994)

    Google Scholar 

  34. 34

    Ludwig, K. Users Manual for Squid 1.02 (Special Publication 1a, Berkeley Geochronology Center, Berkeley, California, 2001)

    Google Scholar 

  35. 35

    Ludwig, K. Users manual for Isoplot/Ex rev. 2.49 (Special Publication 2, Berkeley Geochronology Center, Berkeley, California, 2001)

    Google Scholar 

Download references


This research was supported by a Curtin University grant to A.A.N. and S. A.W. We further acknowledge the Deutsche Forschungsgemeinschaft for financial support. We also wish to thank E. Scherer, F. Tomaschek and I. Fitzsimons for discussions on earlier versions of the manuscript and J. Schlüter from the Mineralogical Museum of the University of Hamburg and A. Bischoff for providing diamond samples for comparative Raman measurements.

Author information



Corresponding authors

Correspondence to Martina Menneken or Thorsten Geisler.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables S1-S2. The Supplementary Table S1 details U, Th, Pb- Isotope SHRIMP data of diamond-bearing zircon grains from Jack Hills, Western Australia. Inclusion paragenesis, and Raman data of the diamond inclusions. The Supplementary Table S2 details Raman-data of reference diamonds. (PDF 501 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Menneken, M., Nemchin, A., Geisler, T. et al. Hadean diamonds in zircon from Jack Hills, Western Australia. Nature 448, 917–920 (2007). https://doi.org/10.1038/nature06083

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing