Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago

Abstract

The hypothesis that the establishment of a permanently oxygenated atmosphere at the Archaean–Proterozoic transition (2.5 billion years ago) occurred when oxygen-producing cyanobacteria evolved1 is contradicted by biomarker evidence for their presence in rocks 200 million years older2. To sustain vanishingly low oxygen levels despite near-modern rates of oxygen production from 2.7–2.5 billion years ago thus requires that oxygen sinks must have been much larger than they are now. Here we propose that the rise of atmospheric oxygen occurred because the predominant sink for oxygen in the Archaean era—enhanced submarine volcanism—was abruptly and permanently diminished during the Archaean–Proterozoic transition. Observations3,4,5 are consistent with the corollary that subaerial volcanism only became widespread after a major tectonic episode of continental stabilization at the beginning of the Proterozoic. Submarine volcanoes are more reducing than subaerial volcanoes6, so a shift from predominantly submarine to a mix of subaerial and submarine volcanism more similar to that observed today would have reduced the overall sink for oxygen and led to the rise of atmospheric oxygen.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Archaean–Palaeoproterozoic volcanism, continental stabilization, and atmospheric oxygen evolution.
Figure 2: Secular variation in proportion of subaerial LIPs.
Figure 3: The distribution of Holland’s f values 6 for modern submarine and subaerial volcanoes.

References

  1. 1

    Kopp, R. E., Kirschvink, J. L., Hillburn, I. A. & Nash, C. Z. The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl Acad. Sci. USA 102, 11131–11136 (2005)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999)

    CAS  Article  Google Scholar 

  3. 3

    Veizer, J. & Mackenzie, F. T. in Treatise on Geochemistry (eds Holland, H. D. and Turekian, K. K.) 369–407 (Elsevier, Amsterdam, 2004)

    Google Scholar 

  4. 4

    Barley, M. E., Bekker, A. & Krapez, B. Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 238, 156–171 (2005)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Hawkesworth, C. J. & Kemp, A. I. S. Evolution of the continental crust. Nature 443, 811–817 (2006)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Canfield, D. E. The early history of atmospheric oxygen: Homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Papineau, D., Mojzsis, S. J. & Schmitt, A. K. Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 255, 188–212 (2007)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Zahnle, K. J., Claire, M. W. & Catling, D. C. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006)

    CAS  Article  Google Scholar 

  11. 11

    Ohmoto, H., Watanabe, Y., Ikemi, H., Poulson, S. R. & Taylor, B. E. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442, 908–911 (2006)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Ono, S., Beukes, N. J., Rumble, D. & Fogel, M. L. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan group of the Pongola supergroup, southerm Africa. South Afr. J. Geol. 109, 97–108 (2006)

    CAS  Article  Google Scholar 

  13. 13

    Barley, M. E., Krapez, B., Groves, D. I. & Kerrich, R. The Late Archaean bonanza: metallogenic and environmental consequences of the interaction between mantle plumes, lithospheric tectonics and global cyclicity. Precambr. Res. 91, 65–90 (1998)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Bjerrum, C. J. & Canfield, D. E. New insights into the burial history of organic carbon on the Early Earth. Geochem. Geophys. Geosyst. 5 doi: 10.1029/2004GC000713 (2004)

  15. 15

    Kump, L. R., Barley, M. E. & Kasting, J. F. Rise of atmospheric oxygen and the “upside-down” Archean mantle. Geochem. Geophys. Geosyst. 2 doi: 10.1029/2000GC000114 (2001)

  16. 16

    Claire, M. W., Catling, D. C. & Zahnle, K. J. Biogeochemical modelling of the rise in atmospheric oxygen. Geobiology 4, 239–269 (2006)

    CAS  Article  Google Scholar 

  17. 17

    Li, Z.-X. A. & Lee, C.-T. A. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. Lond. B 361, 931–950 (2006)

    CAS  Article  Google Scholar 

  19. 19

    Valley, J. W. et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib. Mineral. Petrol. 150, 561–580 (2005)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Sleep, N. H. Evolution of the continental lithosphere. Annu. Rev. Earth Planet. Sci. 33, 369–393 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Sandiford, M. & McLaren, S. in Evolution and Differentiation of the Continental Crust (eds Brown, M. & Rushmer, T.) 67–91 (Cambridge Univ. Press, Cambridge, 2005)

    Google Scholar 

  22. 22

    Bleeker, W. The late Archean record: A puzzle in ca. 35 pieces. Lithos 71, 99–134 (2003)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Condie, K. C. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet. Sci. Lett. 163, 97–108 (1998)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Condie, K. C. in Archean Crustal Evolution (ed. Condie, K. C.) 85–120 (Elsevier, Amsterdam, 1994)

    Book  Google Scholar 

  25. 25

    Moores, E. M. Pre-1 Ga (pre-Rodinian) ophiolites: Their tectonic and environmental implications. Geol. Soc. Am. Bull. 114, 80–95 (2002)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Hoffman, P. F. Geological constraints on the origin of the mantle root beneath the Canadian shield. Phil. Trans. R. Soc. Lond. A 551, 523–532 (1990)

    ADS  Article  Google Scholar 

  27. 27

    Prokoph, A., Ernst, R. E. & Buchan, K. L. Time-series analysis of large igneous provinces: 3500 Ma to present. J. Geol. 112, 1–22 (2004)

    ADS  Article  Google Scholar 

  28. 28

    Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Kump, L. R. & Seyfried, W. E. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 235, 654–662 (2005)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Kharecha, P., Kasting, J. & Siefert, J. A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3, 53–76 (2005)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

L.R.K. acknowledges support from the NASA Astrobiology Institute and the National Science Foundation. M.E.B.’s contribution was supported by the Australian Research Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lee R. Kump.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Tables

The Supplementary Table 1 provides the data used in the assessment of changes in the relative proportion of subaerial vs. submarine volcanism through time based on previously compiled data on occurrences of large igneous provinces. The Supplementary Table 2 provides additional data on older greenstone successions used in our analysis that were not previously identified as associated with large igneous provinces. The Supplementary Table 3 provides a compilation of literature data on the composition of volcanic and hydrothermal fluids and the derived values of “f” used in our analysis of the reducing power of these fluids. The Supplementary Table 4 provides the descriptive statistics and the results of a t-test meant to determine if subaerial and submarine volcanoes have statistically significantly different “f” values. Statistical analysis performed in Microsoft Excel. (PDF 302 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kump, L., Barley, M. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007). https://doi.org/10.1038/nature06058

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing