Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Progressive field-state collapse and quantum non-demolition photon counting

Abstract

The irreversible evolution of a microscopic system under measurement is a central feature of quantum theory. From an initial state generally exhibiting quantum uncertainty in the measured observable, the system is projected into a state in which this observable becomes precisely known. Its value is random, with a probability determined by the initial system’s state. The evolution induced by measurement (known as ‘state collapse’) can be progressive, accumulating the effects of elementary state changes. Here we report the observation of such a step-by-step collapse by non-destructively measuring the photon number of a field stored in a cavity. Atoms behaving as microscopic clocks cross the cavity successively. By measuring the light-induced alterations of the clock rate, information is progressively extracted, until the initially uncertain photon number converges to an integer. The suppression of the photon number spread is demonstrated by correlations between repeated measurements. The procedure illustrates all the postulates of quantum measurement (state collapse, statistical results and repeatability) and should facilitate studies of non-classical fields trapped in cavities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Principle of QND photon counting.
Figure 2: Progressive collapse of field into photon number state.
Figure 3: Reconstructed photon number distribution.
Figure 4: Repeated QND measurements.

References

  1. Wheeler, J. A. & Zurek, W. H. Quantum Theory and Measurement (Princeton Series in Physics, Princeton, New Jersey, 1983)

    Book  Google Scholar 

  2. Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of spin squeezing via continuous quantum non-demolition measurement. Phys. Rev. Lett. 85, 1594–1597 (2000)

    ADS  CAS  Article  Google Scholar 

  3. Geremia, J. M., Stockton, J. K. & Mabuchi, H. Suppression of spin projection noise in broadband atomic magnetometry. Phys. Rev. Lett. 94, 203002 (2005)

    ADS  CAS  Article  Google Scholar 

  4. Braginsky, V. B. & Vorontsov, Y. I. Quantum mechanical limitations in macroscopic experiments and modern experimental technique. Usp. Fiz. Nauk 114, 41–53 (1974); Sov. Phys. Usp. 17, 644–650 (1975)

    ADS  Article  Google Scholar 

  5. Thorne, K. S., Drever, R. W. P., Caves, C. M., Zimmerman, M. & Sandberg, V. D. Quantum nondemolition measurements of harmonic oscillators. Phys. Rev. Lett. 40, 667–671 (1978)

    ADS  Article  Google Scholar 

  6. Unruh, W. G. Analysis of quantum nondemolition measurement. Phys. Rev. D 18, 1764–1772 (1978)

    ADS  Article  Google Scholar 

  7. Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D. & Zimmerman, M. On the measurement of a weak classical force coupled to a quantum mechanical oscillator. Rev. Mod. Phys. 52, 341–392 (1980)

    ADS  Article  Google Scholar 

  8. Milburn, G. J. & Walls, D. F. Quantum nondemolition measurements via quadratic coupling. Phys. Rev. A 28, 2065–2070 (1983)

    ADS  Article  Google Scholar 

  9. Peil, S. & Gabrielse, G. Observing the quantum limit of an electron cyclotron: QND measurement of quantum jumps between Fock states. Phys. Rev. Lett. 83, 1287–1290 (1999)

    ADS  CAS  Article  Google Scholar 

  10. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. J. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003)

    ADS  CAS  Article  Google Scholar 

  11. Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005)

    ADS  CAS  Article  Google Scholar 

  12. Kuzmich, A. et al. Quantum non-demolition measurements of collective atomic spin. Phys. Rev. A 60, 2346–2350 (1999)

    ADS  CAS  Article  Google Scholar 

  13. Grangier, P., Levenson, J. A. & Poizat, J. P. Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998)

    ADS  CAS  Article  Google Scholar 

  14. Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985)

    ADS  CAS  Article  Google Scholar 

  15. Grangier, P., Roch, J. F. & Roger, G. Observation of backaction-evading measurement of an optical intensity in a three-level atomic non-linear system. Phys. Rev. Lett. 66, 1418–1421 (1991)

    ADS  CAS  Article  Google Scholar 

  16. Roch, J. F. et al. Quantum nondemolition measurements using cold trapped atoms. Phys. Rev. Lett. 78, 634–637 (1997)

    ADS  CAS  Article  Google Scholar 

  17. Bencheikh, K., Levenson, J. A., Grangier, P. & Lopez, O. Quantum nondemolition demonstration via repeated backaction evading measurements. Phys. Rev. Lett. 75, 3422–3425 (1995)

    ADS  CAS  Article  Google Scholar 

  18. Bruckmeier, R., Schneider, K., Schiller, S. & Mlynek, J. Quantum nondemolition measurements improved by a squeezed meter input. Phys. Rev. Lett. 78, 1243–1246 (1997)

    ADS  CAS  Article  Google Scholar 

  19. Haroche, S. in Fundamental Systems in Quantum Optics (eds Dalibard, J. & Raimond, J. M.) 767–940 (Les Houches Summer School, Session LIII, North Holland, Amsterdam, 1992)

    Google Scholar 

  20. Haroche, S. & Raimond, J. M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, Oxford, UK, 2006)

    Book  Google Scholar 

  21. Walther, H., Varcoe, B. T. H., Englert, B. G. & Becker, T. Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006)

    ADS  Article  Google Scholar 

  22. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005)

    ADS  CAS  Article  Google Scholar 

  23. Wilk, T., Webster, S. C., Kuhn, A. & Rempe, G. Single-atom single-photon quantum interface. Science doi: 10.1126/science.1143835 (published online 21 June 2007)

  24. Nogues, G. et al. Seeing a single photon without destroying it. Nature 400, 239–242 (1999)

    ADS  CAS  Article  Google Scholar 

  25. Varcoe, B. T. H., Brattke, S., Weidinger, M. & Walther, H. Preparing pure photon number states of the radiation field. Nature 403, 743–746 (2000)

    ADS  CAS  Article  Google Scholar 

  26. Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  27. Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007)

    ADS  CAS  Article  Google Scholar 

  28. Kuhr, S. et al. Ultrahigh finesse Fabry-Pérot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)

    ADS  Article  Google Scholar 

  29. Gleyzes, S. et al. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature 446, 297–300 (2007)

    ADS  CAS  Article  Google Scholar 

  30. Brune, M., Haroche, S., Lefèvre, V., Raimond, J. M. & Zagury, N. Quantum non-demolition measurement of small photon numbers by Rydberg atom phase-sensitive detection. Phys. Rev. Lett. 65, 976–979 (1990)

    ADS  CAS  Article  Google Scholar 

  31. Brune, M., Haroche, S., Raimond, J. M., Davidovich, L. & Zagury, N. Quantum non-demolition measurements and generation of Schrödinger cat states. Phys. Rev. A 45, 5193–5214 (1992)

    CAS  Article  Google Scholar 

  32. Carmichael, H. An Open System Approach to Quantum Optics (Springer, Berlin, 1993)

    Book  Google Scholar 

  33. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, UK, 2000)

    MATH  Google Scholar 

  34. Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    ADS  MathSciNet  Article  Google Scholar 

  35. D’Ariano, G. M. & Yuen, H. P. Impossibility of measuring the wave function of a single quantum system. Phys. Rev. Lett. 76, 2832–2835 (1996)

    ADS  Article  Google Scholar 

  36. Gisin, N., Ribordy, G. G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    ADS  Article  Google Scholar 

  37. Ramsey, N. Molecular Beams (Oxford Univ. Press, Oxford, UK, 1984)

    Google Scholar 

  38. Bayes, T. An essay towards solving a problem in the doctrine of chances. Phil. Trans. R. Soc. Lond. 53, 370–418 (1763)

    MathSciNet  Article  Google Scholar 

  39. Lu, N. Effects of dissipation on photon statistics and the lifetime of a pure number state. Phys. Rev. A 40, 1707–1708 (1989)

    ADS  CAS  Article  Google Scholar 

  40. Maître, X. et al. Quantum memory with a single photon in a cavity. Phys. Rev. Lett. 79, 769–772 (1997)

    ADS  Article  Google Scholar 

  41. Bertet, P. et al. Generating and probing a two-photon Fock state with a single atom in a cavity. Phys. Rev. Lett. 88, 143601 (2002)

    ADS  CAS  Article  Google Scholar 

  42. Brune, M. et al. Observing the progressive decoherence of the meter in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996)

    ADS  CAS  Article  Google Scholar 

  43. Bertet, P. et al. Direct measurement of the Wigner function of a one photon Fock state in a cavity. Phys. Rev. Lett. 89, 200402 (2002)

    ADS  CAS  Article  Google Scholar 

  44. Giulini, D. et al. Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996)

    Book  Google Scholar 

  45. Zurek, W. H. Decoherence, einselection and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  46. Osnaghi, S. et al. Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)

    ADS  CAS  Article  Google Scholar 

  47. Haroche, S., Brune, M. & Raimond, J. M. Measuring photon numbers in a cavity by atomic interferometry: optimizing the convergence procedure. J. Phys. II France 2, 659–670 (1992)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale pour la Recherche (ANR), by the Japan Science and Technology Agency (JST), and by the EU under the IP projects SCALA and CONQUEST. C.G. and S.D. were funded by the Délégation Générale à l’Armement (DGA). J.-M.R. is a member of the Institut Universitaire de France (IUF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michel Brune or Serge Haroche.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guerlin, C., Bernu, J., Deléglise, S. et al. Progressive field-state collapse and quantum non-demolition photon counting. Nature 448, 889–893 (2007). https://doi.org/10.1038/nature06057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06057

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing