Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

No extreme bipolar glaciation during the main Eocene calcite compensation shift


Major ice sheets were permanently established on Antarctica approximately 34 million years ago1,2,3, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world’s oceans4. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago1,2,3,5. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch6,7 and by estimates of global ice volume that exceed the storage capacity of Antarctica8 at the same time as a temporary deepening of the calcite compensation depth 41.6 million years ago9. Here we test the hypothesis that large ice sheets were present in both hemispheres 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary4 and with the ‘hyperthermals’ of the Early Eocene climate optimum3,10,11. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation6,7,8 and model results12,13 that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Palaeoceanographic records showing changes in ocean chemistry and global climate.
Figure 2: Measured increases in δ18O in benthic foraminifera (Δδ18Obenthic) and resulting global continental ice volumes for a range of values for the mean δ18O of stored ice (δ18Oice).
Figure 3: Palaeoceanographic records from ODP Site 1260 showing the run-up to CAE-3.


  1. Miller, K. G., Wright, J. D. & Fairbanks, R. G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res. 96, 6829–6848 (1991)

    ADS  Article  Google Scholar 

  2. Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000)

    ADS  CAS  Article  Google Scholar 

  3. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    ADS  CAS  Article  Google Scholar 

  4. Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H. & Backman, J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433, 53–57 (2005)

    ADS  CAS  Article  Google Scholar 

  5. Holbourn, A., Kuhnt, W., Schulz, M. & Erlenkeuser, H. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438, 483–487 (2005)

    ADS  CAS  Article  Google Scholar 

  6. Moran, K. et al. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441, 601–605 (2006)

    ADS  CAS  Article  Google Scholar 

  7. Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E. & Roberts, A. P. Continental ice in Greenland during the Eocene and Oligocene. Nature 446, 176–179 (2007)

    ADS  CAS  Article  Google Scholar 

  8. Tripati, A., Backman, J., Elderfield, H. & Ferretti, P. Eocene bipolar glaciation associated with global carbon cycle changes. Nature 436, 341–346 (2005)

    ADS  CAS  Article  Google Scholar 

  9. Lyle, M., Olivarez Lyle, A., Backman, J. & Tripati, A. Biogenic sedimentation in the Eocene equatorial Pacific—The stuttering greenhouse and Eocene carbonate compensation depth. Proc. ODP Sci. Res. (eds Wilson, P. A., Lyle, M. & Firth, J. V.). 199, 1–35 (2005)

  10. Zachos, J. C. et al. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. Science 308, 1611–1615 (2005)

    ADS  CAS  Article  Google Scholar 

  11. Lourens, L. J. et al. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435, 1083–1087 (2005)

    ADS  CAS  Article  Google Scholar 

  12. DeConto, R. M. & Pollard, D. Northern Hemisphere glaciation in the early Cenozoic? AGU Fall Meet. abstr. PP21B–1678 (2006)

  13. DeConto, R. M. & Pollard, D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 . Nature 421, 245–249 (2003)

    ADS  CAS  Article  Google Scholar 

  14. Zachos, J. C., Breza, J. R. & Wise, S. W. Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean. Geology 20, 569–573 (1992)

    ADS  CAS  Article  Google Scholar 

  15. Pekar, S. F., Christie-Blick, N., Kominz, M. A. & Miller, K. G. Calibration between eustatic estimates from backstripping and oxygen isotopic records for the Oligocene. Geology 30, 903–906 (2002)

    ADS  CAS  Article  Google Scholar 

  16. Lear, C. H., Rosenthal, Y., Coxall, H. K. & Wilson, P. A. Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle. Paleoceanography 19 doi: 10/1029/2004PA001039 (2004)

  17. Shipboard. Scientific Party 2002. Leg 199 Summary. Proc. ODP Init. Rep. (eds Lyle, M., Wilson, P. A., Janecek, T. R.). 199, 1–87 (2002)

  18. Sexton, P. F., Wilson, P. A. & Norris, R. D. Testing the Cenozoic multi-site composite δ18O and δ13C curves: new Eocene monospecific records from a single locality, Demerara Rise (ODP Leg 207). Paleoceanography 21 PA2019 doi: 10.1029/2005PA001253 (2006)

    ADS  Article  Google Scholar 

  19. Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentration during the Paleogene. Science 309, 600–603 (2005)

    ADS  CAS  Article  Google Scholar 

  20. Wolfe, J. A. in The Carbon Cycle and Atmospheric CO2; Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 357–375 (Geophys. Monogr. 32, American Geophysical Union, Washington DC, 1985)

    Google Scholar 

  21. Pekar, S. F., Hucks, A., Fuller, M. & Li, S. Glacioeustatic changes in the Early and Middle Eocene (51–42 Ma): shallow-water stratigraphy from ODP Leg 189 Site 1171 (South Tasman Rise) and deep-sea δ18O records. Geol. Soc. Am. Bull. 117, 1081–1093 (2005)

    ADS  Article  Google Scholar 

  22. Shipboard. Scientific Party 2004. Leg 207 Summary. Proc. ODP Init. Rep. (eds Erbacher, J., Mosher, D. C. & Malone, M. J.). 207, 1–89 (2004)

  23. Pekar, S. F., DeConto, R. M. & Harwood, D. M. Resolving a late Oligocene conundrum: deep-sea warming and Antarctic glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 29–40 (2006)

    Article  Google Scholar 

  24. Lythe, M. B. & Vaughan, D. G. & the BEDMAP consortium. BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J. Geophys. Res. 106, 335–351 (2001)

    Article  Google Scholar 

  25. Poulsen, C. J., Pollard, D. & White, T. S. General circulation model simulation of the δ18O content of continental precipitation in the middle Cretaceous: A model-proxy comparison. Geology 35, 199–202 (2007)

    ADS  CAS  Article  Google Scholar 

  26. Schrag, D. P. et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev. 21, 331–342 (2002)

    ADS  Article  Google Scholar 

  27. Shipboard. Scientific Party. Leg 198 Summary. Proc. ODP Init. Rep. (eds Bralower, T. J., Premoli-Silva, I. & Malone, M. J.). 198, 1–148 (2002)

  28. Suganuma, Y. & Ogg, J. G. Campanian through Eocene Magnetostratigraphy of Sites 1257–1261, ODP Leg 207, Demerara Rise (Western Equatorial Atlantic). Proc. ODP Sci. Res. (eds Mosher, D. C., Erbacher, J. & Malone, M. J.). 207, 1–48 (2006)

  29. Pälike, H. et al. The heartbeat of the Oligocene climate system. Science 314, 1894–1898 (2006)

    ADS  Article  Google Scholar 

  30. Huybrechts, P. Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Quat. Sci. Rev. 21, 203–231 (2002)

    ADS  Article  Google Scholar 

Download references


This work used samples provided by the Ocean Drilling Program (ODP). The ODP (now IODP) is sponsored by the US National Science Foundation and participating countries under management of the Joint Oceanographic Institutions (JOI), Inc. We thank the shipboard party of ODP Leg 207, M. Bolshaw, M. Cooper and D. Spanner for help with laboratory work, H. Pälike for making data available; S. Gibbs, K. Moriya, H. Pälike, A. Roberts and T. Tyrrell for discussions and comments on an earlier draft and R. Zeebe for his constructive review. Financial support was provided by NERC in the form of a UK IODP grant to P.A.W. and P.F.S and by NERC and Perkin Elmer in the form of a CASE studentship to K.M.E.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Paul A. Wilson.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edgar, K., Wilson, P., Sexton, P. et al. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature 448, 908–911 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing