Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Femtosecond time-delay X-ray holography

Abstract

Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton’s ‘dusty mirror’ experiment1, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging2,3 can be used to achieve high resolution, beyond radiation damage limits for biological samples4. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Diagram of the apparatus, similar to Newton’s dusty-mirror experiment.
Figure 2: Time-delay X-ray holograms of 140-nm-diameter polystyrene spheres.
Figure 3: Geometry for time-delay holography.
Figure 4: Determination of the explosion of polystyrene spheres.

References

  1. Newton, I. Opticks Book 2, part IV (Dover Publications, New York 1952) (originally published by the Royal Society, London, 1704)

    MATH  Google Scholar 

  2. Solem, J. C. & Baldwin, G. C. Microholography of living organisms. Science 218, 229–235 (1982)

    ADS  CAS  Article  Google Scholar 

  3. Chapman, H. N. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006)

    ADS  CAS  Article  Google Scholar 

  4. Howells, M. R. et al. An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J. Electron. Spectrosc. Relat. Phenom.. (in the press); preprint at 〈http://arxiv.org/abs/physics/0502059〉 (2005)

  5. Young, T. The Bakerian Lecture: On the theory of light and colours. Phil. Trans. R. Soc. 92, 12–48 (1802)

    ADS  Article  Google Scholar 

  6. de Witte, A. J. Interference in scattered light. Am. J. Phys. 35, 301–313 (1967)

    ADS  Article  Google Scholar 

  7. Ayvazyan, V. et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297–303 (2006)

    ADS  CAS  Article  Google Scholar 

  8. Hau-Riege, S. et al. Interaction of nanometer-scale multilayer structures with x-ray free-electron laser pulses. Phys. Rev. Lett. 98, 145502 (2007)

    ADS  Article  Google Scholar 

  9. Jurek, Z., Faigel, G. & Tegze, M. Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses. Eur. Phys. J. D 29, 217–229 (2004)

    ADS  CAS  Article  Google Scholar 

  10. Lee, R. et al. Finite temperature dense matter studies on next-generation light sources. J. Opt. Soc. Am. B 20, 770–778 (2003)

    ADS  CAS  Article  Google Scholar 

  11. Bogan, M. J., Benner, W. H., Hau-Riege, S. P., Chapman, H. N. & Frank, M. Aerosol methods for x-ray diffractive imaging: Size-selected nanoparticles on silicon nitride foils. J. Aerosol Sci. (submitted)

  12. Sorokin, A. A. et al. Method based on atomic photoionization for spot-size measurement on focused soft x-ray free-electron laser beams. Appl. Phys. Lett. 89, 221114 (2006)

    ADS  Article  Google Scholar 

  13. Gaur, U. & Wunderlich, B. Heat capacity and other thermodynamic properties of linear macromolecules. V. Polystyrene. J. Phys. Chem. Ref. Data 11, 313–325 (1982)

    ADS  CAS  Article  Google Scholar 

  14. Fienup, J. R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A 4, 118–123 (1987)

    ADS  Article  Google Scholar 

  15. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999)

    ADS  CAS  Article  Google Scholar 

  16. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101R (2003)

    ADS  Article  Google Scholar 

  17. Larabell, C. A. & Le Gros, M. A. X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution. Mol. Biol. Cell 115, 957–962 (2004)

    Article  Google Scholar 

  18. Shapiro, D. et al. Biological imaging by soft x-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 102, 15343–15346 (2005)

    ADS  CAS  Article  Google Scholar 

  19. Bartels, R. A. et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002)

    ADS  CAS  Article  Google Scholar 

  20. Schoenlein, R. W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236–238 (1996)

    ADS  CAS  Article  Google Scholar 

  21. Schoenlein, R. W. et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000)

    ADS  CAS  Article  Google Scholar 

  22. Temnov, V. V., Sokolowski-Tinten, K., Zhou, P. & von der Linde, D. Ultrafast imaging interferometry at femtosecond-laser-excited surfaces. J. Opt. Soc. Am. B 23, 1954–1964 (2006)

    ADS  CAS  Article  Google Scholar 

  23. Cavalleri, A. et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001)

    ADS  CAS  Article  Google Scholar 

  24. Hau-Riege, S. P., London, R. A. & Szöke, A. Dynamics of biological molecules irradiated by short x-ray pulses. Phys. Rev. E 69, 051906 (2004)

    ADS  Article  Google Scholar 

  25. Bergh, M., Timneanu, N. & van der Spoel, D. A model for the dynamics of a water cluster in a X-ray FEL beam. Phys. Rev. E 70, 051904 (2004)

    ADS  Article  Google Scholar 

  26. Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000)

    ADS  CAS  Article  Google Scholar 

  27. Cavalieri, A. L. et al. Clocking femtosecond x-rays. Phys. Rev. Lett. 94, 114801 (2005)

    ADS  CAS  Article  Google Scholar 

  28. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983)

    Google Scholar 

  29. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. Atom. Nucl. Data Tables. 54, 181–342 (1993)

    ADS  CAS  Article  Google Scholar 

  30. Zimmerman, G. B. & More, R. M. Pressure ionization in laser-fusion target simulation. J. Quant. Spectrosc. Radiat. Transf. 23, 517–522 (1980)

    ADS  CAS  Article  Google Scholar 

  31. Marinak, M. M. et al. Three-dimensional HYDRA simulations of National Ignition Facility targets. Phys. Plasmas 8, 2275–2280 (2001)

    ADS  CAS  Article  Google Scholar 

  32. Goodman, J. W. Introduction to Fourier Optics (McGraw-Hill, Boston, 1996)

    Google Scholar 

Download references

Acknowledgements

Special thanks are due to the scientific and technical staff of FLASH at DESY, Hamburg, in particular to T. Tschentscher, S. Dusterer, J. Schneider, J. Feldhaus, R. L. Johnson, U. Hahn, T. Nuñez, K. Tiedtke, S. Toleikis, E. L. Saldin, E. A. Schneidmiller and M. V. Yurkov. We also thank R. Lee, R. Falcone, M. Ahmed and T. Allison for discussions, and J. Alameda, E. Gullikson, F. Dollar, T. McCarville, F. Weber, J. Crawford, C. Stockton, M. Haro, J. Robinson, H. Thomas, M. Hoener and E. Eremina for technical help with these experiments. This work was supported by the following agencies: the US Department of Energy (DOE) under contract to the University of California, Lawrence Livermore National Laboratory; the National Science Foundation Center for Biophotonics, University of California, Davis; the Advanced Light Source, Lawrence Berkeley Laboratory, under DOE contract; the Natural Sciences and Engineering Research Council of Canada (postdoctoral fellowship to M.J.B.); the Swiss National Science Foundation (fellowship to U.R.); the Sven and Lilly Lawskis Foundation (doctoral fellowship to M.M.S.); the US DOE Office of Science to the Stanford Linear Accelerator Center; the European Union (TUIXS); the Swedish Research Council; the Swedish Foundation for International Cooperation in Research and Higher Education; and The Swedish Foundation for Strategic Research.

Author Contributions H.N.C. conceived the experiment, and H.N.C., S.P.H., A.B., S.M., B.W.W., S. Boutet, M.F., R.A.L. and A.S. contributed to its design. S. Bajt, E.S. and H.N.C. designed the camera and designed and characterized the dusty-mirror optics. Samples were prepared by M.J.B., W.H.B. and M.F., and characterized by M.J.B., S.M., S. Boutet and D.A.S.; H.N.C., M.J.B., A.B., S. Boutet, S.M., M.F., B.W.W., W.H.B., U.R., T.M., C.B., D.A.S., F.B., M.B., C.C., G.H., M.M.S. and J.H. carried out the experiment. M.K., R.T. and E.P. interfaced the experiment to FLASH and developed diagnostics. H.N.C., S.P.H., M.J.B. and M.B. carried out data analysis. All authors discussed the results and contributed to the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry N. Chapman.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chapman, H., Hau-Riege, S., Bogan, M. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007). https://doi.org/10.1038/nature06049

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06049

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing