Abstract

Extremely intense and ultrafast X-ray pulses from free-electron lasers offer unique opportunities to study fundamental aspects of complex transient phenomena in materials. Ultrafast time-resolved methods usually require highly synchronized pulses to initiate a transition and then probe it after a precisely defined time delay. In the X-ray regime, these methods are challenging because they require complex optical systems and diagnostics. Here we propose and apply a simple holographic measurement scheme, inspired by Newton’s ‘dusty mirror’ experiment1, to monitor the X-ray-induced explosion of microscopic objects. The sample is placed near an X-ray mirror; after the pulse traverses the sample, triggering the reaction, it is reflected back onto the sample by the mirror to probe this reaction. The delay is encoded in the resulting diffraction pattern to an accuracy of one femtosecond, and the structural change is holographically recorded with high resolution. We apply the technique to monitor the dynamics of polystyrene spheres in intense free-electron-laser pulses, and observe an explosion occurring well after the initial pulse. Our results support the notion that X-ray flash imaging2,3 can be used to achieve high resolution, beyond radiation damage limits for biological samples4. With upcoming ultrafast X-ray sources we will be able to explore the three-dimensional dynamics of materials at the timescale of atomic motion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Opticks Book 2, part IV (Dover Publications, New York 1952) (originally published by the Royal Society, London, 1704)

  2. 2.

    & Microholography of living organisms. Science 218, 229–235 (1982)

  3. 3.

    et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nature Phys. 2, 839–843 (2006)

  4. 4.

    et al. An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy. J. Electron. Spectrosc. Relat. Phenom.. (in the press); preprint at 〈〉 (2005)

  5. 5.

    The Bakerian Lecture: On the theory of light and colours. Phil. Trans. R. Soc. 92, 12–48 (1802)

  6. 6.

    Interference in scattered light. Am. J. Phys. 35, 301–313 (1967)

  7. 7.

    et al. First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297–303 (2006)

  8. 8.

    et al. Interaction of nanometer-scale multilayer structures with x-ray free-electron laser pulses. Phys. Rev. Lett. 98, 145502 (2007)

  9. 9.

    , & Dynamics in a cluster under the influence of intense femtosecond hard X-ray pulses. Eur. Phys. J. D 29, 217–229 (2004)

  10. 10.

    et al. Finite temperature dense matter studies on next-generation light sources. J. Opt. Soc. Am. B 20, 770–778 (2003)

  11. 11.

    , , , & Aerosol methods for x-ray diffractive imaging: Size-selected nanoparticles on silicon nitride foils. J. Aerosol Sci. (submitted)

  12. 12.

    et al. Method based on atomic photoionization for spot-size measurement on focused soft x-ray free-electron laser beams. Appl. Phys. Lett. 89, 221114 (2006)

  13. 13.

    & Heat capacity and other thermodynamic properties of linear macromolecules. V. Polystyrene. J. Phys. Chem. Ref. Data 11, 313–325 (1982)

  14. 14.

    Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A 4, 118–123 (1987)

  15. 15.

    , , & Extending the methodology of x-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999)

  16. 16.

    et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101R (2003)

  17. 17.

    & X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces cerevisiae, at 60-nm resolution. Mol. Biol. Cell 115, 957–962 (2004)

  18. 18.

    et al. Biological imaging by soft x-ray diffraction microscopy. Proc. Natl Acad. Sci. USA 102, 15343–15346 (2005)

  19. 19.

    et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002)

  20. 20.

    et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236–238 (1996)

  21. 21.

    et al. Generation of femtosecond pulses of synchrotron radiation. Science 287, 2237–2240 (2000)

  22. 22.

    , , & Ultrafast imaging interferometry at femtosecond-laser-excited surfaces. J. Opt. Soc. Am. B 23, 1954–1964 (2006)

  23. 23.

    et al. Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys. Rev. Lett. 87, 237401 (2001)

  24. 24.

    , & Dynamics of biological molecules irradiated by short x-ray pulses. Phys. Rev. E 69, 051906 (2004)

  25. 25.

    , & A model for the dynamics of a water cluster in a X-ray FEL beam. Phys. Rev. E 70, 051904 (2004)

  26. 26.

    , , , & Potential for biomolecular imaging with femtosecond X-ray pulses. Nature 406, 752–757 (2000)

  27. 27.

    et al. Clocking femtosecond x-rays. Phys. Rev. Lett. 94, 114801 (2005)

  28. 28.

    & Absorption and Scattering of Light by Small Particles (Wiley-Interscience, New York, 1983)

  29. 29.

    , & X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30000 eV, Z = 1–92. Atom. Nucl. Data Tables. 54, 181–342 (1993)

  30. 30.

    & Pressure ionization in laser-fusion target simulation. J. Quant. Spectrosc. Radiat. Transf. 23, 517–522 (1980)

  31. 31.

    et al. Three-dimensional HYDRA simulations of National Ignition Facility targets. Phys. Plasmas 8, 2275–2280 (2001)

  32. 32.

    Introduction to Fourier Optics (McGraw-Hill, Boston, 1996)

Download references

Acknowledgements

Special thanks are due to the scientific and technical staff of FLASH at DESY, Hamburg, in particular to T. Tschentscher, S. Dusterer, J. Schneider, J. Feldhaus, R. L. Johnson, U. Hahn, T. Nuñez, K. Tiedtke, S. Toleikis, E. L. Saldin, E. A. Schneidmiller and M. V. Yurkov. We also thank R. Lee, R. Falcone, M. Ahmed and T. Allison for discussions, and J. Alameda, E. Gullikson, F. Dollar, T. McCarville, F. Weber, J. Crawford, C. Stockton, M. Haro, J. Robinson, H. Thomas, M. Hoener and E. Eremina for technical help with these experiments. This work was supported by the following agencies: the US Department of Energy (DOE) under contract to the University of California, Lawrence Livermore National Laboratory; the National Science Foundation Center for Biophotonics, University of California, Davis; the Advanced Light Source, Lawrence Berkeley Laboratory, under DOE contract; the Natural Sciences and Engineering Research Council of Canada (postdoctoral fellowship to M.J.B.); the Swiss National Science Foundation (fellowship to U.R.); the Sven and Lilly Lawskis Foundation (doctoral fellowship to M.M.S.); the US DOE Office of Science to the Stanford Linear Accelerator Center; the European Union (TUIXS); the Swedish Research Council; the Swedish Foundation for International Cooperation in Research and Higher Education; and The Swedish Foundation for Strategic Research.

Author Contributions H.N.C. conceived the experiment, and H.N.C., S.P.H., A.B., S.M., B.W.W., S. Boutet, M.F., R.A.L. and A.S. contributed to its design. S. Bajt, E.S. and H.N.C. designed the camera and designed and characterized the dusty-mirror optics. Samples were prepared by M.J.B., W.H.B. and M.F., and characterized by M.J.B., S.M., S. Boutet and D.A.S.; H.N.C., M.J.B., A.B., S. Boutet, S.M., M.F., B.W.W., W.H.B., U.R., T.M., C.B., D.A.S., F.B., M.B., C.C., G.H., M.M.S. and J.H. carried out the experiment. M.K., R.T. and E.P. interfaced the experiment to FLASH and developed diagnostics. H.N.C., S.P.H., M.J.B. and M.B. carried out data analysis. All authors discussed the results and contributed to the final manuscript.

Author information

Author notes

    • Stefano Marchesini
    •  & David A. Shapiro

    Present address: Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (S.M., D.A.S.).

Affiliations

  1. University of California, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA

    • Henry N. Chapman
    • , Stefan P. Hau-Riege
    • , Michael J. Bogan
    • , Saša Bajt
    • , Anton Barty
    • , Sébastien Boutet
    • , Stefano Marchesini
    • , Matthias Frank
    • , Bruce W. Woods
    • , W. Henry Benner
    • , Richard A. London
    • , Urs Rohner
    • , Abraham Szöke
    •  & Eberhard Spiller
  2. Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Boulevard, Suite 1400, Sacramento, California 95817, USA

    • Henry N. Chapman
    •  & David A. Shapiro
  3. Stanford Synchrotron Radiation Laboratory, Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94305, USA

    • Sébastien Boutet
    •  & Janos Hajdu
  4. Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden

    • Sébastien Boutet
    • , Florian Burmeister
    • , Magnus Bergh
    • , Carl Caleman
    • , Gösta Huldt
    • , M. Marvin Seibert
    •  & Janos Hajdu
  5. Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, PN 3-1, 10623 Berlin, Germany

    • Thomas Möller
    •  & Christoph Bostedt
  6. Deutsches Elektronen-Synchrotron, DESY, Notkestraße 85, D-22607 Hamburg, Germany

    • Marion Kuhlmann
    • , Rolf Treusch
    •  & Elke Plönjes

Authors

  1. Search for Henry N. Chapman in:

  2. Search for Stefan P. Hau-Riege in:

  3. Search for Michael J. Bogan in:

  4. Search for Saša Bajt in:

  5. Search for Anton Barty in:

  6. Search for Sébastien Boutet in:

  7. Search for Stefano Marchesini in:

  8. Search for Matthias Frank in:

  9. Search for Bruce W. Woods in:

  10. Search for W. Henry Benner in:

  11. Search for Richard A. London in:

  12. Search for Urs Rohner in:

  13. Search for Abraham Szöke in:

  14. Search for Eberhard Spiller in:

  15. Search for Thomas Möller in:

  16. Search for Christoph Bostedt in:

  17. Search for David A. Shapiro in:

  18. Search for Marion Kuhlmann in:

  19. Search for Rolf Treusch in:

  20. Search for Elke Plönjes in:

  21. Search for Florian Burmeister in:

  22. Search for Magnus Bergh in:

  23. Search for Carl Caleman in:

  24. Search for Gösta Huldt in:

  25. Search for M. Marvin Seibert in:

  26. Search for Janos Hajdu in:

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Corresponding author

Correspondence to Henry N. Chapman.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature06049

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.