Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strong dipolar effects in a quantum ferrofluid

Abstract

Symmetry-breaking interactions have a crucial role in many areas of physics, ranging from classical ferrofluids to superfluid 3He and d-wave superconductivity. For superfluid quantum gases, a variety of new physical phenomena arising from the symmetry-breaking interaction between electric or magnetic dipoles are expected1. Novel quantum phases in optical lattices, such as chequerboard or supersolid phases, are predicted for dipolar bosons2,3. Dipolar interactions can also enrich considerably the physics of quantum gases with internal degrees of freedom4,5,6. Arrays of dipolar particles could be used for efficient quantum information processing7. Here we report the realization of a chromium Bose–Einstein condensate with strong dipolar interactions. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole–dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the atom cloud; for strong dipolar interactions, the inversion of ellipticity during expansion (the usual ‘smoking gun’ evidence for a Bose–Einstein condensate) can be suppressed. These effects are accounted for by taking into account the dipolar interaction in the superfluid hydrodynamic equations governing the dynamics of the gas, in the same way as classical ferrofluids can be described by including dipolar terms in the classical hydrodynamic equations. Our results are a first step in the exploration of the unique properties of quantum ferrofluids.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Tuning the chromium scattering length.
Figure 2: Inelastic losses close to the resonance.
Figure 3: Increasing the dipolar parameter.
Figure 4: MDDI-dominated BEC expansion.

References

  1. Baranov, M., Dobrek, Ł., Góral, K., Santos, L. & Lewenstein, M. Ultracold dipolar gases — a challenge for experiments and theory. Phys. Scr. T102, 74–81 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Góral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002)

    Article  ADS  Google Scholar 

  3. Menotti, C., Trefzger, C. & Lewenstein, M. Metastable states of a gas of dipolar bosons in a 2D optical lattice. Phys. Rev. Lett. 98, 235301 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Kawaguchi, Y., Saito, H. & Ueda, M. Einstein–de Haas effect in dipolar Bose-Einstein condensates. Phys. Rev. Lett. 96, 080405 (2006)

    Article  ADS  Google Scholar 

  5. Santos, L. & Pfau, T. Spin-3 chromium Bose-Einstein condensates. Phys. Rev. Lett. 96, 190404 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Yi, S. & Pu, H. Spontaneous spin textures in dipolar spinor condensates. Phys. Rev. Lett. 97, 020401 (2006)

    Article  ADS  CAS  Google Scholar 

  7. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)

    Article  ADS  CAS  Google Scholar 

  8. Doyle, J., Friedrich, B., Krems, R. V. & Masnou-Seeuws, F. Special issue on ultracold molecules. Eur. Phys. J. D 31, 149–445 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Köhler, T., Góral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006)

    Article  ADS  Google Scholar 

  10. Ospelkaus, C. et al. Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97, 120402 (2006)

    Article  ADS  CAS  Google Scholar 

  11. Sage, J., Sainis, S., Bergeman, T. & DeMille, D. Optical production of ultracold polar molecules. Phys. Rev. Lett. 94, 203001 (2005)

    Article  ADS  Google Scholar 

  12. Marinescu, M. & You, L. Controlling atom-atom interaction at ultralow temperatures by dc electric fields. Phys. Rev. Lett. 81, 4596–4599 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Giovanazzi, S., O’Dell, D. & Kurizki, G. Density modulations of Bose-Einstein condensates via laser-induced interactions. Phys. Rev. Lett. 88, 130402 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. & Pfau, T. Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005)

    Article  ADS  Google Scholar 

  15. Griesmaier, A. et al. Comparing contact and dipolar interactions in a Bose-Einstein condensate. Phys. Rev. Lett. 97, 250402 (2006)

    Article  ADS  Google Scholar 

  16. Stuhler, J. et al. Observation of dipole-dipole interaction in a degenerate quantum gas. Phys. Rev. Lett. 95, 150406 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Werner, J., Griesmaier, A., Hensler, S., Stuhler, J. & Pfau, T. Observation of Feshbach resonances in an ultracold gas of 52Cr. Phys. Rev. Lett. 94, 183201 (2005)

    Article  ADS  CAS  Google Scholar 

  18. Giovanazzi, S. et al. Expansion dynamics of a dipolar Bose-Einstein condensate. Phys. Rev. A 74, 013621 (2006)

    Article  ADS  Google Scholar 

  19. Inouye, S. et al. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature 392, 151–154 (1998)

    Article  ADS  CAS  Google Scholar 

  20. Stenger, J. et al. Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances. Phys. Rev. Lett. 82, 2422–2425 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Santos, L., Shlyapnikov, G. V., Zoller, P. & Lewenstein, M. Bose-Einstein condensation in trapped dipolar gases. Phys. Rev. Lett. 85, 1791–1794 (2000)

    Article  ADS  CAS  Google Scholar 

  22. Góral, K., Rza̧żewski, K. & Pfau, T. Bose-Einstein condensation with magnetic dipole-dipole forces. Phys. Rev. A 61, 051601(R) (2000)

    Article  ADS  Google Scholar 

  23. Dutta, O. & Meystre, P. Ground-state structure and stability of dipolar condensates in anisotropic traps. Phys. Rev. A 75, 053604 (2007)

    Article  ADS  Google Scholar 

  24. Ronen, S., Bortolotti, D. C. E. & Bohn, J. L. Radial and angular rotons in trapped dipolar gases. Phys. Rev. Lett. 98, 030406 (2007)

    Article  ADS  Google Scholar 

  25. Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Roton-maxon spectrum and stability of trapped dipolar Bose-Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003)

    Article  ADS  CAS  Google Scholar 

  26. Sasaki, S., Ishiguro, R., Caupin, F., Maris, H. J. & Balibar, S. Superfluidity of grain boundaries and supersolid behavior. Science 313, 1098–1100 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Santos for discussions and J. Stuhler for contributions in the initial phases of the experiment. We acknowledge financial support by the German Science Foundation (SFB/TRR21) and the EU (Marie-Curie fellowship to T.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry Lahaye or Tilman Pfau.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lahaye, T., Koch, T., Fröhlich, B. et al. Strong dipolar effects in a quantum ferrofluid. Nature 448, 672–675 (2007). https://doi.org/10.1038/nature06036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06036

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing