Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The JAZ family of repressors is the missing link in jasmonate signalling

Abstract

Jasmonates are essential phytohormones for plant development and survival. However, the molecular details of their signalling pathway remain largely unknown. The identification more than a decade ago of COI1 as an F-box protein suggested the existence of a repressor of jasmonate responses that is targeted by the SCFCOI1 complex for proteasome degradation in response to jasmonate. Here we report the identification of JASMONATE-INSENSITIVE 3 (JAI3) and a family of related proteins named JAZ (jasmonate ZIM-domain), in Arabidopsis thaliana. Our results demonstrate that JAI3 and other JAZs are direct targets of the SCFCOI1 E3 ubiquitin ligase and jasmonate treatment induces their proteasome degradation. Moreover, JAI3 negatively regulates the key transcriptional activator of jasmonate responses, MYC2. The JAZ family therefore represents the molecular link between the two previously known steps in the jasmonate pathway. Furthermore, we demonstrate the existence of a regulatory feed-back loop involving MYC2 and JAZ proteins, which provides a mechanistic explanation for the pulsed response to jasmonate and the subsequent desensitization of the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: JAI3-dependent gene expression and identification of JAI3.
Figure 2: JAI3–COI1 interaction and COI1-dependent proteasome degradation of JAI3.
Figure 3: Regulation of MYC2 by JAI3.
Figure 4: Functional redundancy among JAZ proteins.
Figure 5: Feed-back regulation of JAZ expression by MYC2.

Similar content being viewed by others

References

  1. Devoto, A. & Turner, J. G. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann. Bot. (Lond.) 92, 329–337 (2003)

    Article  CAS  Google Scholar 

  2. Farmer, E. E., Almeras, E. & Krishnamurthym, V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6, 372–378 (2003)

    Article  CAS  Google Scholar 

  3. Rojo, E., Solano, R. & Sánchez-Serrano, J. J. Interactions between signaling compounds involved in plant defense. J. Plant Growth Regul. 22, 82–98 (2003)

    Article  CAS  Google Scholar 

  4. Lorenzo, O. & Solano, R. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol. 8, 532–540 (2005)

    Article  CAS  Google Scholar 

  5. Flescher, E. Jasmonates-a new family of anti-cancer agents. Anticancer Drugs 16, 911–916 (2005)

    Article  CAS  Google Scholar 

  6. Demole, E., Lederer, E. & Mercier, D. Isolement et determination de la structure du jasmonate de methyle, constituant odorant characteristique de l'essence de jasmin. Helv. Chim. Acta XLV, 675–685 (1962)

    Article  Google Scholar 

  7. Liechti, R. & Farmer, E. E. Jasmonate biochemical pathway. Sci. STKE 203, CM18 (2006)

    Google Scholar 

  8. Liechti, R., Gfeller, A. & Farmer, E. E. Jasmonate signaling pathway. Sci. STKE 322, CM2 (2006)

    Google Scholar 

  9. Devoto, A. et al. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457–466 (2002)

    Article  CAS  Google Scholar 

  10. Feng, S. et al. The COP9 signalosome interacts physically with SCF COI1 and modulates jasmonate responses. Plant Cell 15, 1083–1094 (2003)

    Article  CAS  Google Scholar 

  11. Feys, B., Benedetti, C. E., Penfold, C. N. & Turner, J. G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759 (1994)

    Article  CAS  Google Scholar 

  12. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Xu, L. et al. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919–1935 (2002)

    Article  CAS  Google Scholar 

  14. Boter, M., Ruiz-Rivero, O., Abdeen, A. & Prat, S. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 18, 1577–1591 (2004)

    Article  CAS  Google Scholar 

  15. Lorenzo, O., Chico, J. M., Sánchez-Serrano, J. J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938–1950 (2004)

    Article  CAS  Google Scholar 

  16. Lorenzo, O., Piqueras, R., Sánchez-Serrano, J. J. & Solano, R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15, 165–178 (2003)

    Article  CAS  Google Scholar 

  17. Nishii, A. et al. Characterization of a novel gene encoding a putative single zinc-finger protein, ZIM, expressed during the reproductive phase in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 64, 1402–1409 (2000)

    Article  CAS  Google Scholar 

  18. Shikata, M. et al. Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family. J. Exp. Bot. 55, 631–639 (2004)

    Article  CAS  Google Scholar 

  19. Datta, S., Hettiarachchi, G. H. C. M., Deng, X.-W. & Holm, M. Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. Plant Cell 18, 70–84 (2006)

    Article  CAS  Google Scholar 

  20. Robson, F. et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 28, 619–631 (2001)

    Article  MathSciNet  CAS  Google Scholar 

  21. Staswick, P. E. & Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117–2127 (2004)

    Article  CAS  Google Scholar 

  22. Thines, B. et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature advance online publication. doi: 10.1038/nature05960 (this issue)

  23. Färber, K., Schumann, B., Miersch, O. & Roos, W. Selective desensitization of jasmonate- and pH-dependent signaling in the induction of benzophenanthridine biosynthesis in cells of Eschscholzia californica. Phytochemistry 62, 491–500 (2003)

    Article  Google Scholar 

  24. Dharmasiri, N., Dharmasiri, S. & Estelle, M. The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445 (2005)

    Article  ADS  CAS  Google Scholar 

  25. Kepinski, S. & Leyser, O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446–451 (2005)

    Article  ADS  CAS  Google Scholar 

  26. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007)

    Article  ADS  CAS  Google Scholar 

  27. Weiler, E. W. et al. The Pseudomonas phytotoxin coronatine mimics octadecanoid signalling molecules of higher plants. FEBS Lett. 345, 9–13 (1994)

    Article  CAS  Google Scholar 

  28. Axel, M., Mathias, M. & Wilhelm, B. Structural and biological diversity of cyclic octadecanoids, jasmonates, and mimetics. J. Plant Growth Regul. 23, 170–178 (2004)

    Article  Google Scholar 

  29. Stintzi, A., Weber, H., Reymond, P., Browse, J. & Farmer, E. E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl Acad. Sci. USA 98, 12837–12842 (2001)

    Article  ADS  CAS  Google Scholar 

  30. Taki, N. et al. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol. 139, 1268–1283 (2005)

    Article  CAS  Google Scholar 

  31. Uppalapati, S. R. et al. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 42, 201–217 (2005)

    Article  CAS  Google Scholar 

  32. Mita, S., Suzuki-Fujii, K. & Nakamura, K. Sugar-inducible expression of a gene for beta-amylase in Arabidopsis thaliana. Plant Physiol. 107, 895–904 (1995)

    Article  CAS  Google Scholar 

  33. Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998)

    Article  CAS  Google Scholar 

  34. Hammarstrom, M., Hellgren, N., van Den Berg, S., Berglund, H. & Hard, T. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli.. Protein Sci. 11, 313–321 (2002)

    Article  CAS  Google Scholar 

  35. Schiestl, R. H. & Gietz, R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16, 339–346 (1989)

    Article  CAS  Google Scholar 

  36. Adie, B. A. T. et al. ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19, 1665–1681 (2007)

    Article  CAS  Google Scholar 

  37. Solano, R., Stepanova, A., Chao, Q. & Ecker, J. R. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev. 12, 3703–3714 (1998)

    Article  CAS  Google Scholar 

  38. Thijs, G. et al. A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17, 1113–1122 (2001)

    Article  CAS  Google Scholar 

  39. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003)

    Article  ADS  Google Scholar 

  40. Deblaere, R. et al. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13, 4777–4788 (1985)

    Article  CAS  Google Scholar 

  41. Valli, A., Martin-Hernandez, A. M., Lopez-Moya, J. J. & Garcia, J. A. RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus, a member of the family Potyviridae that lacks the cysteine protease HCPro. J. Virol. 80, 10055–10063 (2006)

    Article  CAS  Google Scholar 

  42. Ponce, M. R., Robles, P. & Micol, J. L. High-throughput genetic mapping in Arabidopsis thaliana. Mol. Gen. Genet. 261, 408–415 (1999)

    Article  CAS  Google Scholar 

  43. Ponce, M. R., Robles, P., Lozano, F. M., Brotons, M. A. & Micol, J. L. Low-resolution mapping of untagged mutations. Methods Mol. Biol. 323, 105–113 (2006)

    CAS  PubMed  Google Scholar 

  44. Bell, C. J. & Ecker, J. R. Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137–144 (1994)

    Article  CAS  Google Scholar 

  45. Benjamani, Y. & Hochberg, Y. Controlling the false discovery rate. J. R. Stat. Soc. Ser. C Appl. Stat. 57, 289–300 (1995)

    MATH  Google Scholar 

  46. Saeed, A. I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003)

    Article  CAS  Google Scholar 

  47. Chini, A. & Loake, G. J. Motifs specific for the ADR1 NBS-LRR protein family in Arabidopsis are conserved among NBS-LRR sequences from both dicotyledonous and monocotyledonous plants. Planta 4, 597–601 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Castresana, J. A. García, J. Paz-Ares and S. Prat for critical reading of the manuscript and V. Rubio , J. C. del Pozo and J. M. Iglesias-Pedraz for advice on pull-down and proteasome degradation experiments. We also thank M. Laos and S. Gutiérrez for technical assistance. We are grateful to B. Thines and J. Browse for sharing results before publication. We also thank J. Turner for providing coi1-1 seeds, P. Staswick for jar1 and NASC for T-DNA insertions lines and full-length cDNAs. This work was supported by funding from the Ministerio de Educación y Ciencia of Spain (to R.S., J.L.M. and M.R.P.), and the Comunidad de Madrid and European Comission (to R.S.). A.C. was supported by an EMBO long-term Fellowship, and S.F. by a Portuguese FCT fellowship.

Author Contributions A.C. was responsible for experiments of Fig. 1b–h and Fig. 2c–i, S.F. performed all pull-down experiments, G.F., in vitro degradation experiments and EMSA, B.A., two-hybrid assays, J.M.C., G.G.-C. and I.L.-V., microarray analysis and A.C., O.L., F.M.L., J.L.M. and M.R.P. mapped jai3-1. R.S. designed experiments, supervised the work and wrote the manuscript. All authors discussed the results and commented on the manuscript.

MIAMExpress Accession numbers for all microarray experiments are: E-ATMX-15, E-ATMX-16, E-ATMX-17 and E-ATMX-18. Accession numbers for JAZ family members are: JAZ1, At1g19180; JAZ2, At1g74950; JAI3(JAZ3), At3g17860; JAZ4, At1g48500; JAZ5, At1g17380; JAZ6, At1g72450; JAZ7, At2g34600; JAZ8, At1g30135; JAZ9, At1g70700; JAZ10, At5g13220; JAZ11, At3g43440; and JAZ12, At5g20900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Solano.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S7 with Legends and Supplementary Tables S1-S3. (PDF 1990 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chini, A., Fonseca, S., Fernández, G. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007). https://doi.org/10.1038/nature06006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06006

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing