Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Water vapour in the atmosphere of a transiting extrasolar planet

Abstract

Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (‘hot Jupiters’)1,2. Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it3,4 or led to claims that should be taken with caution5. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6 μm, 5.8 μm (both ref. 7) and 8 μm (ref. 8). The larger effective radius observed at visible wavelengths9 may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet’s atmosphere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A comparison of the observations with simulated water absorption.
Figure 2: A comparison of the observations of primary transit with a simulated infrared and optical transmission spectrum.
Figure 3: Simulated emission spectra of HD 189733b in the infrared.

References

  1. 1

    Seager, S. & Sasselov, D. D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, L916–L921 (2000)

    ADS  Article  Google Scholar 

  2. 2

    Liang, M. C., Parkinson, C. D., Lee, A. Y.-T., Yung, Y. L. & Seager, S. Source of atomic hydrogen in the atmosphere of HD209458b. Astrophys. J. 596, L247–L250 (2003)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Richardson, L. J., Deming, D., Horning, K., Seager, S. & Harrington, J. A spectrum of an extrasolar planet. Nature 445, 892–895 (2007)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Grillmair, C. J. et al. A Spitzer spectrum of the exoplanet HD189733b. Astrophys. J. 658, L115–L118 (2007)

    ADS  Article  Google Scholar 

  5. 5

    Barman, T. Identification of absorption features in an extrasolar planet atmosphere. Astrophys. J. 661, L191–L194 (2007)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Bouchy, F. et al. ELODIE metallicity-biased search for transiting hot Jupiters II. A very hot Jupiter transiting the bright K star HD189733. Astron. Astrophys. 444, L15–L19 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Beaulieu, J. P. et al. Spitzer observations of the primary transit of the planet HD189733b at 3.6 and 5.8 μm. Astrophys. J. (submitted)

  8. 8

    Knutson, H. A. et al. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Winn, J. N. et al. The transit light curve project. V. System parameters and stellar rotation period of HD 189733. Astron. J. 133, 1828–1835 (2007)

    ADS  Article  Google Scholar 

  10. 10

    Brown, T. M. Transmission spectra as diagnostics of extrasolar giant planet atmospheres. Astrophys. J. 553, 1006–1026 (2001)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Tinetti, G. et al. Infrared transmission spectra for extrasolar giant planets. Astrophys. J. 654, L99–L102 (2007)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Vidal-Madjar, A. et al. Detection of oxygen and carbon in the upper atmosphere of the extrasolar planet HD209458b. Astrophys. J. 604, L69–L72 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Ballester, G. E., Sing, D. K. & Herbert, F. The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b. Nature 445, 511–514 (2007)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Knutson, H. A., Charbonneau, D., Noyes, R. W., Brown, T. M. & Gilliland, R. L. Using stellar limb-darkening to refine the properties of HD 209458b. Astrophys. J. 655, 564–575 (2007)

    ADS  Article  Google Scholar 

  17. 17

    Barber, R. J., Tennyson, J., Harris, G. J. & Tolchenov, R. A high accuracy computed water line list. Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Burrows, A., Sudarsky, D. & Hubeny, I. Theory for the secondary eclipse fluxes, spectra, atmospheres and light curves of transiting extrasolar giant planets. Astrophys. J. 650, 1140–1149 (2006)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Liang, M. C., Yung, Y. L. & Shemansky, D. E. Photolytically generated aerosols in the mesosphere and thermosphere of Titan. Astrophys. J. 661, L199–L201 (2007)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Rothman, L. S. et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Allard, N. F., Allard, F., Hauschildt, P. H., Kielkopf, J. F. & Machin, L. A new model for brown dwarf spectra including accurate unified line shape theory for the Na I and K I resonance line profiles. Astron. Astrophys. 411, L473–L476 (2003)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Allard, N. F., Spiegelman, F. & Kielkopf, J. F. Study of the K-H2 quasi molecular line satellite in the potassium resonance line. Astron. Astrophys. 465, 1085–1091 (2007)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Borysow, A., Jorgensen, U. G. & Fu, Y. High temperature (1000–7000K) collision induced absorption of H2 pairs computed from the first principles, with application to cool and dense stellar atmospheres. J. Quant. Spectrosc. Radiat. Transf. 68, 235–255 (2001)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Goody, R. M. & Yung, Y. L. Atmospheric Radiation (Oxford Univ. Press, New York, 1989)

    Google Scholar 

  25. 25

    Richardson, L. J., Harrington, J., Seager, S. & Deming, D. A Spitzer infrared radius for the transiting extrasolar planet HD209458b. Astrophys. J. 649, 1043–1047 (2006)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Charbonneau, D. et al. Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523–529 (2005)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Deming, D., Seager, S., Richardson, L. J. & Harrington, J. Infrared radiation from an extrasolar planet. Nature 434, 740–743 (2005)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Fortney, J. J., Cooper, C. S., Showman, A. P., Marley, M. S. & Freedman, R. S. The influence of atmospheric dynamics on the infrared spectra and light curves of hot Jupiters. Astrophys. J. 652, 746–757 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Hanel, R. A. et al. The Nimbus 4 infrared spectroscopy experiment 1. Calibrated thermal emission spectra. J. Geophys. Res. 77, 2629–2639 (1972)

    ADS  Article  Google Scholar 

  30. 30

    Fortney, J. J. & Marley, M. S. Analysis of Spitzer mid infrared spectra of irradiated planets: Evidence for water vapor? Astrophys. J. (submitted)

Download references

Acknowledgements

We thank A. Lecavelier, D. Ehrenreich, J.-M. Désert, Roger Ferlet and G. Hebrard for their work on the IRAC observations. We thank A. Noriega-Crespo and the Spitzer Staff for helping to schedule the observations with IRAC, and E. Lellouch, A. Morbidelli, B. Schultz, F. Bouchy and J. B. Marquette for useful input to the paper. M.-C.L. and Y.Y. were supported by NASA and the Virtual Planetary Laboratory at the California Institute of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanna Tinetti.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tinetti, G., Vidal-Madjar, A., Liang, MC. et al. Water vapour in the atmosphere of a transiting extrasolar planet. Nature 448, 169–171 (2007). https://doi.org/10.1038/nature06002

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing