Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons


Understanding the transmission of sensory information at individual synaptic connections requires knowledge of the properties of presynaptic terminals and their patterns of firing evoked by sensory stimuli. Such information has been difficult to obtain because of the small size and inaccessibility of nerve terminals in the central nervous system. Here we show, by making direct patch-clamp recordings in vivo from cerebellar mossy fibre boutons—the primary source of synaptic input to the cerebellar cortex1,2—that sensory stimulation can produce bursts of spikes in single boutons at very high instantaneous firing frequencies (more than 700 Hz). We show that the mossy fibre–granule cell synapse exhibits high-fidelity transmission at these frequencies, indicating that the rapid burst of excitatory postsynaptic currents underlying the sensory-evoked response of granule cells3 can be driven by such a presynaptic spike burst. We also demonstrate that a single mossy fibre can trigger action potential bursts in granule cells in vitro when driven with in vivo firing patterns. These findings suggest that the relay from mossy fibre to granule cell can act in a ‘detonator’ fashion, such that a single presynaptic afferent may be sufficient to transmit the sensory message. This endows the cerebellar mossy fibre system with remarkable sensitivity and high fidelity in the transmission of sensory information.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Properties of mossy fibre boutons in vitro and in vivo.
Figure 2: Sensory-evoked spiking in mossy fibre boutons and EPSCs in granule cells in vivo.
Figure 3: Synaptic dynamics at the mossy fibre–granule cell synapse in vivo and in vitro.
Figure 4: High-fidelity synaptic transmission at the mossy fibre–granule cell synapse in vivo and in vitro.
Figure 5: Input from a single mossy fibre reliably drives granule cell firing.


  1. Ramón y Cajal, S. La Textura del Sistema Nerviosa del Hombre y los Vertebrados (Moya, Madrid, 1904)

    Google Scholar 

  2. Palay, S. L. & Chan-Palay, V. Cerebellar Cortex—Cytology and Organization (Springer, Berlin, 1974)

    Book  Google Scholar 

  3. Chadderton, P., Margrie, T. W. & Häusser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Holtzman, T., Rajapaksa, T., Mostofi, A. & Edgley, S. A. Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J. Physiol. (Lond.) 574, 491–507 (2006)

    Article  CAS  Google Scholar 

  5. Simpson, J. I., Hulscher, H. C., Sabel-Goedknegt, E. & Ruigrok, T. J. Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog. Brain Res. 148, 329–340 (2005)

    Article  CAS  Google Scholar 

  6. Engel, D. & Jonas, P. Presynaptic action potential amplification by voltage-gated Na+ channels in hippocampal mossy fiber boutons. Neuron 45, 405–417 (2005)

    Article  CAS  Google Scholar 

  7. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952)

    Article  CAS  Google Scholar 

  8. Eccles, J. C., Faber, D. S., Murphy, J. T., Sabah, N. H. & Taborikova, H. Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. I. In mossy fibers and granule cells. Exp. Brain Res. 13, 15–35 (1971)

    Article  CAS  Google Scholar 

  9. van Kan, P. L., Gibson, A. R. & Houk, J. C. Movement-related inputs to intermediate cerebellum of the monkey. J. Neurophysiol. 69, 74–94 (1993)

    Article  CAS  Google Scholar 

  10. Garwicz, M., Jörntell, H. & Ekerot, C. F. Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J. Physiol. (Lond.) 512, 277–293 (1998)

    Article  CAS  Google Scholar 

  11. Lisberger, S. G. & Fuchs, A. F. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. J. Neurophysiol. 41, 764–777 (1978)

    Article  CAS  Google Scholar 

  12. Morissette, J. & Bower, J. M. Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Exp. Brain Res. 109, 240–250 (1996)

    Article  CAS  Google Scholar 

  13. Silver, R. A., Cull-Candy, S. G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996)

    Article  CAS  Google Scholar 

  14. Silver, I. A. & Erecinska, M. Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo. J. Gen. Physiol. 95, 837–866 (1990)

    Article  CAS  Google Scholar 

  15. Kristian, T. & Siesjo, B. K. Calcium in ischemic cell death. Stroke 29, 705–718 (1998)

    Article  CAS  Google Scholar 

  16. DiGregorio, D. A., Nusser, Z. & Silver, R. A. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002)

    Article  CAS  Google Scholar 

  17. Geiger, J. R. P. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000)

    Article  CAS  Google Scholar 

  18. Southan, A. P., Morris, N. P., Stephens, G. J. & Robertson, B. Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells. J. Physiol. (Lond.) 526, 91–97 (2000)

    Article  CAS  Google Scholar 

  19. Cuttle, M. F., Rusznák, Z., Wong, A. Y., Owens, S. & Forsythe, I. D. Modulation of a presynaptic hyperpolarization-activated cationic current (Ih) at an excitatory synaptic terminal in the rat auditory brainstem. J. Physiol. (Lond.) 534, 733–744 (2001)

    Article  CAS  Google Scholar 

  20. Jones, L. M., Lee, S., Trageser, J. C., Simons, D. J. & Keller, A. Precise temporal responses in whisker trigeminal neurons. J. Neurophysiol. 92, 665–668 (2004)

    Article  Google Scholar 

  21. Jakab, R. L. & Hamori, J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. (Berl.) 179, 81–88 (1988)

    Article  CAS  Google Scholar 

  22. Saviane, C. & Silver, R. A. Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature 439, 983–987 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971)

    Article  Google Scholar 

  24. D’Angelo, E., De Filippi, G., Rossi, P. & Taglietti, V. Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J. Physiol. (Lond.) 484, 397–413 (1995)

    Article  Google Scholar 

  25. Marr, D. A theory of cerebellar cortex. J. Physiol. (Lond.) 202, 437–470 (1969)

    Article  CAS  Google Scholar 

  26. Jörntell, H. & Ekerot, C. F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797 (2006)

    Article  Google Scholar 

  27. McNaughton, B. L. & Morris, R. G. M. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10, 408–415 (1987)

    Article  Google Scholar 

  28. Henze, D. A., Wittner, L. & Buzsáki, G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nature Neurosci. 5, 790–795 (2002)

    Article  CAS  Google Scholar 

  29. Maex, R. & De Schutter, E. Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J. Neurophysiol. 80, 2521–2537 (1998)

    Article  CAS  Google Scholar 

  30. Barbour, B. Synaptic currents evoked in Purkinje cells by stimulating individual granule cells. Neuron 11, 759–769 (1993)

    Article  CAS  Google Scholar 

  31. Margrie, T. W., Brecht, M. & Sakmann, B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflügers Arch. 444, 491–498 (2002)

    Article  CAS  Google Scholar 

  32. Bischofberger, J., Engel, D., Li, L., Geiger, J. R. & Jonas, P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nature Protocols 1, 2075–2081 (2006)

    Article  CAS  Google Scholar 

  33. Leusen, I. Regulation of cerebrospinal fluid composition with reference to breathing. Physiol. Rev. 52, 1–56 (1972)

    Article  CAS  Google Scholar 

Download references


We thank J. Geiger for guidance during the slice experiments; B. Clark, J. Davie, M. Farrant and A. Roth for comments on the manuscript; K. Kitamura, S. Komai and M. Rizzi for help with preliminary experiments; and L. Ramakrishnan and H. Cuntz for help with histology. This work was supported by grants from the European Union, Wellcome Trust and Gatsby Foundation (M.H.), and by a Wellcome Prize Studentship (E.A.R.), a Human Frontier Science Program Long-Term Fellowship (T.I.), a Wellcome Trust Advanced Training Fellowship (I.D.) and a University College London Graduate School Research Scholarship (P.C.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael Häusser.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-5 with Legends, Supplementary Table 1 and additional references. (PDF 1285 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rancz, E., Ishikawa, T., Duguid, I. et al. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450, 1245–1248 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing