Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO

Abstract

Venus has thick clouds of H2SO4 aerosol particles extending from altitudes of 40 to 60 km. The 60–100 km region (the mesosphere) is a transition region between the 4 day retrograde superrotation at the top of the thick clouds and the solar–antisolar circulation in the thermosphere (above 100 km), which has upwelling over the subsolar point and transport to the nightside1,2. The mesosphere has a light haze of variable optical thickness, with CO, SO2, HCl, HF, H2O and HDO as the most important minor gaseous constituents, but the vertical distribution of the haze and molecules is poorly known because previous descent probes began their measurements at or below 60 km. Here we report the detection of an extensive layer of warm air at altitudes 90–120 km on the night side that we interpret as the result of adiabatic heating during air subsidence. Such a strong temperature inversion was not expected, because the night side of Venus was otherwise so cold that it was named the ‘cryosphere’ above 100 km. We also measured the mesospheric distributions of HF, HCl, H2O and HDO. HCl is less abundant than reported 40 years ago3. HDO/H2O is enhanced by a factor of 2.5 with respect to the lower atmosphere, and there is a general depletion of H2O around 80–90 km for which we have no explanation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Night-side temperature of Venus atmosphere.
Figure 2: Typical evolution of atmospheric spectral transmittances through one solar occultation observed by SOIR spectrometer.
Figure 3: HF and HCl mixing ratio vertical profiles retrieved from SOIR occultations.
Figure 4: HDO and H 2 O mixing ratio, HDO/ H 2 O vertical profiles.

Similar content being viewed by others

References

  1. Dickinson, R. E. & Ridley, E. C. Venus mesosphere and thermosphere temperature structure: II. Day-night variations. Icarus 30, 163–178 (1977)

    Article  ADS  CAS  Google Scholar 

  2. Bougher, S. W., Alexander, M. J. & Mayr, H. G. in Venus II (eds Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 259–291 (Univ. Arizona Press, Tucson, 1997)

    Google Scholar 

  3. Connes, P., Connes, J., Benedict, W. S. & Kaplan, L. D. Traces of HCl and HF in the atmosphere of Venus. Astrophys. J. 147, 1230–1237 (1967)

    Article  ADS  CAS  Google Scholar 

  4. Bertaux, J.-L. et al. SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. J. Geophys. Res. 111 E10S90 10.1029/2006JE002690 (2006)

    ADS  Google Scholar 

  5. Quémerais, E. et al. Stellar occultations observed by SPICAM on Mars Express. J. Geophys. Rev. 111 10.1029/2005JE002604 (2006)

  6. Clancy, R. T., Sandor, B. J. & Moriarty-Schieven, G. H. Observational definition of the Venus mesopause: vertical structure, diurnal variation, and temporal instability. Icarus 161, 1–16 (2003)

    Article  ADS  Google Scholar 

  7. Lellouch, E., Goldstein, J. J., Rosenqvist, J., Bougher, S. W. & Paubert, G. Global circulation, thermal structure, and carbon monoxide distribution in Venus’s mesosphere in 1991. Icarus 110, 315–339 (1994)

    Article  ADS  CAS  Google Scholar 

  8. Zasova, L. V., Moroz, V. I., Linkin, V. M., Khatuntsev, I. V. & Maioriv, B. S. Structure of the Venusian atmosphere from surface up to 100 km. Cosmic Res. 44, 364–383 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Jenkins, J. M., Steffes, P. G., Hinson, D. P., Twicken, J. D. & Tyler, G. L. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft, 2. Results from the October 1991 experiments. Icarus 110, 79–94 (1994)

    Article  ADS  CAS  Google Scholar 

  10. Stewart, A. I. F., Gérard, J. C., Rusch, D. W. & Bougher, S. W. Morphology of the Venus ultraviolet night airglow. J. Geophys. Res. 85, 7861–7870 (1980)

    Article  ADS  Google Scholar 

  11. Gerard, J. C., Stewart, A. I. F. & Bougher, S. W. The altitude distribution of the Venus ultra-violet nightglow and implications on Vertical transport. Geophys. Res. Lett. 8, 633–636 (1981)

    Article  ADS  CAS  Google Scholar 

  12. Connes, P., Noxon, J. F., Traub, W. A. & Carleton, N. P. O2 (1Δ) emission in the day and night airglow of Venus. Astrophys. J. 233, L29–L32 (1979)

    Article  ADS  CAS  Google Scholar 

  13. Drossart, P. et al. Venus upper atmospheric emissions from VIRTIS spectral imaging observations. Nature 10.1038/nature05xxx (this issue).

  14. Bougher, S. W., Gerard, J. C., Stewart, A. I. F. & Fessen, C. G. The Venus nitric oxide night airglow—Model calculations based on the Venus Thermospheric General Circulation Model. J. Geophys. Res. 95, 6271–6284 (1990)

    Article  ADS  Google Scholar 

  15. Keating, G. M. et al. VIRA (Venus International Reference Atmosphere) models of Venus neutral upper atmosphere: structure and composition. Adv. Space Res. 5 (11). 117–171 (1985)

    Article  ADS  CAS  Google Scholar 

  16. Sandor, B. J. & Clancy, R. T. Water variations in the Venus mesosphere from microwave spectra. Icarus 177, 129–143 (2005)

    Article  ADS  Google Scholar 

  17. Gurwell, M. A. Melnick, G. J., Tolls, V., Bergin, E. A. & Patten, B. M. SWAS observations of water vapor in the Venus mesosphere. Icarus 188, 288–304 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Nevejans, D. et al. Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from 2.2 to 4.3 μm. Appl. Opt. 45, 5191–5206 (2006)

    Article  ADS  Google Scholar 

  19. Vandaele, A. C., Kruglanski, M. & De Mazière, M. Simulation and retrieval of atmospheric spectra using ASIMUT. In ESA Atmospheric Sci. Conf. (Frascati, Italy, 2006) [CD-ROM] 71.1 (ESA SP-628, Noordwijk, 2006)

    Google Scholar 

  20. Bézard, B., De Bergh, C., Crisp, D. & Maillard, J.-P. The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345, 508–511 (1990)

    Article  ADS  Google Scholar 

  21. Björaker, G. L. et al. Airborne observations of the gas composition of Venus above the cloud tops: measurements of H2O, HDO, HF and the D/H and 18O/16O isotopic ratios. Bull. Am. Astron. Soc. 24, 995 (1992)

    ADS  Google Scholar 

  22. Yung, Y. L. & DeMore, W. B. Photochemistry of the stratosphere of Venus: Implications for atmospheric evolution. Icarus 51, 199–247 (1982)

    Article  ADS  CAS  Google Scholar 

  23. Donahue, T. M., Hoffman, J. H., Hodges, R. R. & Watson, A. J. Venus was wet—a measurement of the ratio of deuterium to hydrogen. Science 216, 630–633 (1982)

    Article  ADS  CAS  Google Scholar 

  24. Donahue, T. M., Grinspoon, D. H., Hartle, R. E. & Hodges, R. R. in Venus II (eds Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 385–414 (Univ. Arizona Press, Tucson, 1997)

    Google Scholar 

  25. De Bergh, C. et al. Deuterium on Venus: observations from Earth. Science 251, 547–549 (1991)

    Article  ADS  CAS  Google Scholar 

  26. Bertaux, J. L. & Montmessin, F. Isotopic fractionation through water vapor condensation: the deuteropause, a cold trap for deuterium in the atmosphere of Mars. J. Geophys. Res. Planets 106, 32879–32884 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Cheng, B.-M. et al. Photo-induced fractionation of water isotopomers in the martian atmosphere. Geophys. Res. Lett. 26, 3657–3660 (1999)

    Article  ADS  CAS  Google Scholar 

  28. Young, L. D. G. High resolution spectra of Venus-A review. Icarus 17, 632–658 (1972)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Venus Express is a space mission from the European Space Agency (ESA). We wish to thank all ESA members who participated in this successful mission, and in particular H. Svedhem, D. McCoy, O. Witasse, A. Accomazzo and J. Louet. We also thank Astrium for the design and construction of the spacecraft, and in particular A. Clochet, responsible for the payload. We thank D. Hinson for communication of the Magellan radio-occultation atmospheric profile, and Y. Yung and T. Clancy for discussions. We thank our collaborators at Service d’Aéronomie/France, BIRA/Belgium and IKI/Moscow for the design and fabrication of the instrument. We thank CNRS and CNES for financing SPICAV/SOIR in France, the Belgian government, Roskosmos and the Russian Academy of Sciences. The Russian team acknowledges support from the Russian Foundation for Basic Research, and from the Russian Science Support Foundation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jean-Loup Bertaux.

Supplementary information

Supplementary Information

The file contains Supplementary Notes and Supplementary Figure 1 with Legend. The Supplementary Notes discuss the retrieval of CO2 density and temperature for stellar occultations in the UV, about the concept of the new SOIR spectrometer, and retrieval of atmospheric minor constituents from SOIR. The Supplementary Figure 1 is composed of four panels, showing for a typical stellar occultation: a) the atmospheric spectral transmission at various altitudes and their best fit model; b) the derived line densities vertical profile; c) the derived densities vertical profile; d) the temperature vertical profile. (PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertaux, JL., Vandaele, AC., Korablev, O. et al. A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646–649 (2007). https://doi.org/10.1038/nature05974

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05974

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing