Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

New cell lines from mouse epiblast share defining features with human embryonic stem cells

Abstract

The application of human embryonic stem (ES) cells in medicine and biology has an inherent reliance on understanding the starting cell population. Human ES cells differ from mouse ES cells and the specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo before implantation in the uterus1,2,3,4,5. Here we show that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper. These cells, which we refer to as EpiSCs (post-implantation epiblast-derived stem cells), express transcription factors known to regulate pluripotency, maintain their genomic integrity, and robustly differentiate into the major somatic cell types as well as primordial germ cells. The EpiSC lines are distinct from mouse ES cells in their epigenetic state and the signals controlling their differentiation. Furthermore, EpiSC and human ES cells share patterns of gene expression and signalling responses that normally function in the epiblast. These results show that epiblast cells can be maintained as stable cell lines and interrogated to understand how pluripotent cells generate distinct fates during early development.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cell lines from the E5.5 murine epiblast can be isolated and maintained in culture.
Figure 2: EpiSC lines are pluripotent and differentiate in vitro and in vivo.
Figure 3: Mouse ES cells and EpiSCs have distinct gene expression.
Figure 4: Mouse ES cells and EpiSCs use distinct mechanisms to regulate pluripotency and differentiation.

References

  1. 1

    Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Brook, F. A. & Gardner, R. L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl Acad. Sci. USA 94, 5709–5712 (1997)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Chung, Y. et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439, 216–219 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Tesar, P. J. Derivation of germ-line-competent embryonic stem cell lines from preblastocyst mouse embryos. Proc. Natl Acad. Sci. USA 102, 8239–8244 (2005)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Gardner, R. L. Origin and differentiation of extraembryonic tissues in the mouse. Int. Rev. Exp. Pathol. 24, 63–133 (1983)

    CAS  PubMed  Google Scholar 

  7. 7

    Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007)

    CAS  Article  Google Scholar 

  8. 8

    Pelton, T. A., Sharma, S., Schulz, T. C., Rathjen, J. & Rathjen, P. D. Transient pluripotent cell populations during primitive ectoderm formation: correlation of in vivo and in vitro pluripotent cell development. J. Cell Sci. 115, 329–339 (2002)

    CAS  PubMed  Google Scholar 

  9. 9

    Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006)

    CAS  Article  Google Scholar 

  10. 10

    Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006)

    CAS  Article  Google Scholar 

  11. 11

    Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005)

    CAS  Article  Google Scholar 

  12. 12

    Loh, Y. H. et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nature Genet. 38, 431–440 (2006)

    CAS  Article  Google Scholar 

  13. 13

    Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991)

    CAS  PubMed  Google Scholar 

  15. 15

    Gardner, R. L., Lyon, M. F., Evans, E. P. & Burtenshaw, M. D. Clonal analysis of X-chromosome inactivation and the origin of the germ line in the mouse embryo. J. Embryol. Exp. Morphol. 88, 349–363 (1985)

    CAS  PubMed  Google Scholar 

  16. 16

    Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 (2004)

    CAS  Article  Google Scholar 

  17. 17

    Cai, J. et al. Assessing self-renewal and differentiation in human embryonic stem cell lines. Stem Cells 24, 516–530 (2006)

    CAS  Article  Google Scholar 

  18. 18

    Liu, Y. et al. Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines. BMC Dev. Biol. 6, 20 (2006)

    CAS  Article  Google Scholar 

  19. 19

    Wang, J. et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 444, 364–368 (2006)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Yu, R. N., Ito, M., Saunders, T. L., Camper, S. A. & Jameson, J. L. Role of Ahch in gonadal development and gametogenesis. Nature Genet. 20, 353–357 (1998)

    CAS  Article  Google Scholar 

  21. 21

    Hayashi, K., de Sousa Lopes, S. M. & Surani, M. A. Germ cell specification in mice. Science 316, 394–396 (2007)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Lawson, K. A. et al. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436 (1999)

    CAS  Article  Google Scholar 

  23. 23

    Camus, A., Perea-Gomez, A., Moreau, A. & Collignon, J. Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo. Dev. Biol. 295, 743–755 (2006)

    CAS  Article  Google Scholar 

  24. 24

    Vallier, L., Reynolds, D. & Pedersen, R. A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol. 275, 403–421 (2004)

    CAS  Article  Google Scholar 

  25. 25

    James, D., Levine, A. J., Besser, D. & Hemmati-Brivanlou, A. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132, 1273–1282 (2005)

    CAS  Article  Google Scholar 

  26. 26

    Niwa, H., Burdon, T., Chambers, I. & Smith, A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060 (1998)

    CAS  Article  Google Scholar 

  27. 27

    Daheron, L. et al. LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778 (2004)

    CAS  Article  Google Scholar 

  28. 28

    Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Ogawa, K. et al. Activin–Nodal signaling is involved in propagation of mouse embryonic stem cells. J. Cell Sci. 120, 55–65 (2007)

    CAS  Article  Google Scholar 

  30. 30

    Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev. 19, 1129–1155 (2005)

    CAS  Article  Google Scholar 

  31. 31

    Downs, K. M. In vitro methods for studying vascularization of the murine allantois and allantoic union with the chorion. Methods. Mol. Med. 121, 241–72 (2006)

    CAS  PubMed  Google Scholar 

  32. 32

    Beddington, R. S. Isolation, culture and manipulation of post-implantation mouse embryos (ed. Monk, M.) (IRL Press, Oxford, 1987)

    Google Scholar 

  33. 33

    Nagy, A. Manipulating the mouse embryo: a laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2003)

    Google Scholar 

  34. 34

    Zvetkova, I. et al. Global hypomethylation of the genome in XX embryonic stem cells. Nat. Genet. 37, 1274–1279 (2005)

    CAS  Article  Google Scholar 

  35. 35

    Robertson, E. J. Teratocarcinomas and embryonic stem cells: a practical approach (IRL, Oxford; Washington DC, 1987)

    Google Scholar 

  36. 36

    Deome, K. B., Faulkin, L. J., Bern, H. A. & Blair, P. B. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer. Res. 19, 515–520 (1959)

    CAS  PubMed  Google Scholar 

  37. 37

    Hirst, C. E. et al. Transcriptional profiling of mouse and human ESCs identifies SLAIN1, a novel stem cell gene. Dev. Biol. 293, 90–103 (2006)

    CAS  Article  Google Scholar 

  38. 38

    Kent, W. J. et al. The human genome browser at UCSC. Genome. Res. 12, 996–1006 (2002)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Battey and Y. Ninomiya for comments on the manuscript and C. Graham, P. Fairchild, J. Pickel, K. Downs, W. Ferguson, and members of the McKay and Gardner labs and the NIH Stem Cell Unit for their contributions to this work. This research was supported by the Intramural Research Programs of the NIH–NINDS and NIH–NCI and by the Wellcome Trust. R.L.G. acknowledges the Royal Society for support. P.J.T. is an NIH–Oxford Biomedical Research Scholar.

Author Contributions P.J.T. derived the EpiSC lines. J.G.C. and P.J.T. carried out in vitro experiments. F.A.B., R.L.G. and P.J.T. derived the mouse ES cells. P.J.T., F.A.B. and T.J.D. performed chimera experiments. P.J.T. and D.L.M. performed teratoma experiments. P.J.T. and E.P.E. performed karyotypic analysis. P.J.T., J.G.C., and R.D.G.M. analysed the data and wrote the paper.

Microarray data are available at the Gene Expression Omnibus website (www.ncbi.nlm.nih.gov/geo) under accession number GSE7902.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Paul J. Tesar or Ronald D. G. McKay.

Ethics declarations

Competing interests

Microarray data are available at the Gene Expression Omnibus website (www.ncbi.nlm.nih.gov/geo) under accession number GSE7902. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information 1

This file contains Supplementary Figures 1-9 with Legends, Supplementary Table 1, and additional references. (PDF 3597 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tesar, P., Chenoweth, J., Brook, F. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007). https://doi.org/10.1038/nature05972

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links