Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling


Jasmonate and related signalling compounds have a crucial role in both host immunity and development in plants, but the molecular details of the signalling mechanism are poorly understood. Here we identify members of the jasmonate ZIM-domain (JAZ) protein family as key regulators of jasmonate signalling. JAZ1 protein acts to repress transcription of jasmonate-responsive genes. Jasmonate treatment causes JAZ1 degradation and this degradation is dependent on activities of the SCFCOI1 ubiquitin ligase and the 26S proteasome. Furthermore, the jasmonoyl–isoleucine (JA–Ile) conjugate, but not other jasmonate-derivatives such as jasmonate, 12-oxo-phytodienoic acid, or methyl-jasmonate, promotes physical interaction between COI1 and JAZ1 proteins in the absence of other plant proteins. Our results suggest a model in which jasmonate ligands promote the binding of the SCFCOI1 ubiquitin ligase to and subsequent degradation of the JAZ1 repressor protein, and implicate the SCFCOI1–JAZ1 protein complex as a site of perception of the plant hormone JA–Ile.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and analysis of eight JAZ proteins in Arabidopsis.
Figure 2: Deletion of domain 3 of JAZ1 produces a dominant, jasmonate-resistant phenotype.
Figure 3: Analysis of JAZ1–GUS function.
Figure 4: JA–Ile-dependent interaction between COI1 and JAZ1 in yeast.
Figure 5: Specificity of jasmonate action in a cell-free system.


  1. Mandaokar, A. et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J. 46, 984–1008 (2006)

    Article  CAS  Google Scholar 

  2. Farmer, E. E. & Ryan, C. A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl Acad. Sci. USA 87, 7713–7716 (1990)

    Article  ADS  CAS  Google Scholar 

  3. Vijayan, P., Shockey, J., Lévesque, C. A., Cook, R. J. & Browse, J. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl Acad. Sci. USA 95, 7209–7214 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Kessler, A., Halitschke, R. & Baldwin, I. T. Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305, 665–668 (2004)

    Article  ADS  CAS  Google Scholar 

  5. Farmer, E. E. Surface-to-air signals. Nature 411, 854–856 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Reymond, P. et al. A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16, 3132–3147 (2004)

    Article  CAS  Google Scholar 

  7. Conconi, A., Smerdon, M. J., Howe, G. A. & Ryan, C. A. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383, 826–829 (1996)

    Article  ADS  CAS  Google Scholar 

  8. Browse, J. in Vitamins and Hormones (ed. Litwack, G.) 431–456 (AP-Elsevier, New York, 2005)

    Google Scholar 

  9. Feys, B., Benedetti, C. E., Penfold, C. N. & Turner, J. G. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6, 751–759 (1994)

    Article  CAS  Google Scholar 

  10. Xie, D. X., Feys, B. F., James, S., Nieto-Rostro, M. & Turner, J. G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Xiao, S. et al. COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell 16, 1132–1142 (2004)

    Article  CAS  Google Scholar 

  12. Staswick, P. E. & Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117–2127 (2004)

    Article  CAS  Google Scholar 

  13. Turner, J. G., Ellis, C. & Devoto, A. The jasmonate signal pathway. Plant Cell 14 (Suppl.). S153–S164 (2002)

    Article  CAS  Google Scholar 

  14. Li, L. et al. The tomato homolog of CORONATINE INSENSITIVE1 is required for maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16, 126–143 (2004)

    Article  CAS  Google Scholar 

  15. Funk, C. D. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871–1875 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999)

    Article  CAS  Google Scholar 

  17. Moon, J., Parry, G. & Estelle, M. The ubiquitin-proteasome pathway and plant development. Plant Cell 16, 3181–3195 (2004)

    Article  CAS  Google Scholar 

  18. Lorenzo, O. & Solano, R. Molecular players regulating the jasmonate signalling network. Curr. Opin. Plant Biol. 8, 532–540 (2005)

    Article  CAS  Google Scholar 

  19. Xu, L. et al. The SCF(COI1) ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14, 1919–1935 (2002)

    Article  CAS  Google Scholar 

  20. Jensen, A. B., Raventos, D. & Mundy, J. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis. Plant J. 29, 595–606 (2002)

    Article  CAS  Google Scholar 

  21. Lorenzo, O., Chico, J. M., Sanchez-Serrano, J. J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938–1950 (2004)

    Article  CAS  Google Scholar 

  22. Ellis, C. & Turner, J. G. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13, 1025–1033 (2001)

    Article  CAS  Google Scholar 

  23. Devoto, A. et al. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J. 32, 457–466 (2002)

    Article  CAS  Google Scholar 

  24. Devoto, A. et al. Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol. Biol. 58, 497–513 (2005)

    Article  CAS  Google Scholar 

  25. Shikata, M. et al. Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family. J. Exp. Bot. 55, 631–639 (2004)

    Article  CAS  Google Scholar 

  26. Schmid, M. et al. A gene expression map of Arabidopsis thaliana development. Nature Genet. 37, 501–506 (2005)

    Article  MathSciNet  CAS  Google Scholar 

  27. Stintzi, A. & Browse, J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl Acad. Sci. USA 97, 10625–10630 (2000)

    Article  ADS  CAS  Google Scholar 

  28. Katagiri, F., Thilmony, R. & He, S. Y. in The Arabidopsis Book (eds Somerville, C. R. & Meyerowitz, E.M.) doi:10.1199-tab.0039 (American Society of Plant Biologists, Rockville, Maryland, 2002)

  29. McConn, M., Creelman, R. A., Bell, E., Mullet, J. E. & Browse, J. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl Acad. Sci. USA 94, 5473–5477 (1997)

    Article  ADS  CAS  Google Scholar 

  30. Gray, W. M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276 (2001)

    Article  ADS  CAS  Google Scholar 

  31. Sasaki, A. et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896–1898 (2003)

    Article  ADS  CAS  Google Scholar 

  32. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature doi: 10.1038/nature06006 (this issue).

  33. Kramell, R. et al. Amino acid conjugates of jasmonic acid induce jasmonate-responsive gene expression in barley (Hordeum vulgare L.). FEBS Lett. 414, 197–202 (1997)

    Article  Google Scholar 

  34. Seo, H. S. et al. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc. Natl Acad. Sci. USA 98, 4788–4793 (2001)

    Article  ADS  CAS  Google Scholar 

  35. Stintzi, A., Weber, H., Reymond, P., Browse, J. & Farmer, E. E. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl Acad. Sci. USA 98, 12837–12842 (2001)

    Article  ADS  CAS  Google Scholar 

  36. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007)

    Article  ADS  CAS  Google Scholar 

  37. Li, C. et al. Role of β-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato. Plant Cell 17, 971–986 (2005)

    Article  CAS  Google Scholar 

  38. Schilmiller, A. L., Koo, A. J. K. & Howe, G. A. Functional diversification of acyl-CoA oxidases in jasmonic acid biosynthesis. Plant Physiol. 143, 812–824 (2007)

    Article  CAS  Google Scholar 

Download references


We are particularly grateful to Y. Shimada and members of his laboratory for the publicly available data in Fig. 1b, J. Turner for coi1-1, R. Kramell and P. Staswick for providing jasmonate–amino-acid conjugates, and M. Garavito for pRMG-nMAL. We thank C. Skidmore for help preparing the figures, B. Ryan and C. Somerville for discussions and critical reading of the manuscript. Arabidopsis T-DNA mutants were from the Arabidopsis Biological Resource Center, Ohio State University. This work was supported by funding from the US Department of Energy (J.B., S.Y.H., G.A.H.), the National Institutes of Health (S.Y.H., G.A.H.) and the Agricultural Research Center at WSU (J.B.).

Author Contributions B.T., L.K., M.M., S.Y.H., G.A.H. and J.B. planned experiments and analyses. B.T., L.K., M.M., Y.N., A.M., G.L. and K.N. performed experiments and analysed the results. B.T., S.Y.H., G.A.H. and J.B. wrote the manuscript. All authors discussed the results and commented on the manuscript.

The GenBank accession number for the tomato JAZ1 nucleotide sequence is EF591123. The GEO accession number for microarray data is GDS2133.

Author information

Authors and Affiliations


Corresponding author

Correspondence to John Browse.

Ethics declarations

Competing interests

The GenBank accession number for the tomato JAZ1 nucleotide sequence is EF591123. The GEO accession number for microarray data is GDS2133. Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Results, Supplementary Figures S1 - S5 with Legends and additional references. (PDF 792 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thines, B., Katsir, L., Melotto, M. et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448, 661–665 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing