Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conformational entropy in molecular recognition by proteins


Molecular recognition by proteins is fundamental to almost every biological process, particularly the protein associations underlying cellular signal transduction. Understanding the basis for protein–protein interactions requires the full characterization of the thermodynamics of their association. Historically it has been virtually impossible to experimentally estimate changes in protein conformational entropy, a potentially important component of the free energy of protein association. However, nuclear magnetic resonance spectroscopy has emerged as a powerful tool for characterizing the dynamics of proteins. Here we employ changes in conformational dynamics as a proxy for corresponding changes in conformational entropy. We find that the change in internal dynamics of the protein calmodulin varies significantly on binding a variety of target domains. Surprisingly, the apparent change in the corresponding conformational entropy is linearly related to the change in the overall binding entropy. This indicates that changes in protein conformational entropy can contribute significantly to the free energy of protein–ligand association.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Thermodynamic origins of high-affinity binding of target domains by calmodulin.
Figure 2: Correlation of the change in conformational entropy of calmodulin with the change in the total entropy of binding of a target domain.
Figure 3: Distribution of the amplitude of methyl-bearing side-chain motion of calmodulin in complex with target domains, and correlation with the change in total entropy of binding.


  1. Wodak, S. J. & Janin, J. Structural basis of macromolecular recognition. Adv. Prot. Chem. 61, 9–73 (2002)

    Google Scholar 

  2. Clackson, T. & Wells, J. A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995)

    ADS  CAS  Article  Google Scholar 

  3. Spolar, R. S. & Record, M. T. Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784 (1994)

    ADS  CAS  Article  Google Scholar 

  4. Sturtevant, J. M. Heat capacity and entropy changes in processes involving proteins. Proc. Natl Acad. Sci. USA 74, 2236–2240 (1977)

    ADS  CAS  Article  Google Scholar 

  5. Steinberg, I. Z. & Scheraga, H. A. Entropy changes accompanying association reactions of proteins. J. Biol. Chem. 238, 172–181 (1963)

    CAS  PubMed  Google Scholar 

  6. Cooper, A. & Dryden, D. T. F. Allostery without conformational change — a plausible model. Eur. Biophys. J. Biophys. Lett. 11, 103–109 (1984)

    CAS  Article  Google Scholar 

  7. Karplus, M., Ichiye, T. & Pettitt, B. M. Configurational entropy of native proteins. Biophys. J. 52, 1083–1085 (1987)

    CAS  Article  Google Scholar 

  8. Grunberg, R., Nilges, M. & Leckner, J. Flexibility and conformational entropy in protein–protein binding. Structure 14, 683–693 (2006)

    Article  Google Scholar 

  9. Igumenova, T. I., Frederick, K. K. & Wand, A. J. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev. 106, 1672–1699 (2006)

    CAS  Article  Google Scholar 

  10. Cavanagh, J. et al. Protein NMR spectroscopy: Principles and practice 2nd edn (Elsevier, Burlington, Massachusetts, 2006)

    Google Scholar 

  11. Kahl, C. R. & Means, A. R. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 24, 719–736 (2003)

    CAS  Article  Google Scholar 

  12. Yap, K. L. et al. Calmodulin target database. J. Struct. Funct. Genom. 1, 8–14 (2000)

    CAS  Article  Google Scholar 

  13. Lee, A. L., Kinnear, S. A. & Wand, A. J. Redistribution and loss of side chain entropy upon formation of a calmodulin-peptide complex. Nature Struct. Biol. 7, 72–77 (2000)

    CAS  Article  Google Scholar 

  14. Lukas, T. J. et al. Calmodulin binding domains: characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry 25, 1458–1464 (1986)

    CAS  Article  Google Scholar 

  15. Zhang, M. & Vogel, H. J. Characterization of the calmodulin-binding domain of rat cerebellar nitric oxide synthase. J. Biol. Chem. 269, 981–985 (1994)

    CAS  PubMed  Google Scholar 

  16. Tokumitsu, H. et al. Calcium/calmodulin-dependent protein kinase kinase: identification of regulatory domains. Biochemistry 36, 12823–12827 (1997)

    CAS  Article  Google Scholar 

  17. Goldberg, J., Nairn, A. C. & Kuriyan, J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887 (1996)

    CAS  Article  Google Scholar 

  18. Charbonneau, H. et al. Evidence for domain organization within the 61-kDa calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain. Biochemistry 30, 7931–7940 (1991)

    CAS  Article  Google Scholar 

  19. Wintrode, P. L. & Privalov, P. L. Energetics of target peptide recognition by calmodulin: a calorimetric study. J. Mol. Biol. 266, 1050–1062 (1997)

    CAS  Article  Google Scholar 

  20. Brokx, R. D. et al. Energetics of target peptide binding by calmodulin reveals different modes of binding. J. Biol. Chem. 276, 14083–14091 (2001)

    CAS  Article  Google Scholar 

  21. Farrow, N. A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology-2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994)

    CAS  Article  Google Scholar 

  22. Wang, T., Cai, S. & Zuiderweg, E. R. Temperature dependence of anisotropic protein backbone dynamics. J. Am. Chem. Soc. 125, 8639–8643 (2003)

    CAS  Article  Google Scholar 

  23. Muhandiram, D. R. et al. Measurement of H-2 T-1 and T-1p relaxation-times in uniformly C-13-Labeled and fractionally H-2-labeled proteins in solution. J. Am. Chem. Soc. 117, 11536–11544 (1995)

    CAS  Article  Google Scholar 

  24. Akke, M., Bruschweiler, R. & Palmer, A. G. NMR order parameters and free-energy — an analytical approach and its application to cooperative Ca2+ binding by calbindin-D(9k). J. Am. Chem. Soc. 115, 9832–9833 (1993)

    CAS  Article  Google Scholar 

  25. Li, Z., Raychaudhuri, S. & Wand, A. J. Insights into the local residual entropy of proteins provided by NMR relaxation. Prot. Sci. 5, 2647–2650 (1996)

    CAS  Article  Google Scholar 

  26. Lee, A. L. et al. Temperature dependence of the internal dynamics of a calmodulin-peptide complex. Biochemistry 41, 13814–13825 (2002)

    CAS  Article  Google Scholar 

  27. Lee, A. L. & Wand, A. J. Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501–504 (2001)

    ADS  CAS  Article  Google Scholar 

  28. Best, R. B., Clarke, J. & Karplus, M. The origin of protein sidechain order parameter distributions. J. Am. Chem. Soc. 126, 7734–7735 (2004)

    CAS  Article  Google Scholar 

  29. Chou, J. J., Case, D. A. & Bax, A. Insights into the mobility of methyl-bearing side chains in proteins from 3JCC and 3JCN couplings. J. Am. Chem. Soc. 125, 8959–8966 (2003)

    CAS  Article  Google Scholar 

  30. Best, R. B., Clarke, J. & Karplus, M. What contributions to protein side-chain dynamics are probed by NMR experiments? A molecular dynamics simulation analysis. J. Mol. Biol. 349, 185–203 (2005)

    CAS  Article  Google Scholar 

  31. Kranz, J. K. et al. A direct test of the reductionist approach to structural studies of calmodulin activity: relevance of peptide models of target proteins. J. Biol. Chem. 277, 16351–16354 (2002)

    CAS  Article  Google Scholar 

  32. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982)

    CAS  Article  Google Scholar 

  33. Dellwo, M. J. & Wand, A. J. Model-independent and model-dependent analysis of the global and internal dynamics of cyclosporine-A. J. Am. Chem. Soc. 111, 4571–4578 (1989)

    CAS  Article  Google Scholar 

  34. Scott, D. On optimal and data-based histograms. Biometrika 10, 605–610 (1979)

    MathSciNet  Article  Google Scholar 

Download references


This work was supported by a grant from the National Institutes of Health. We are grateful to S. W. Englander for helpful discussion and to Mark I. Greene for access to isothermal titration calorimetry instrumentation.

Author Contributions A.J.W. devised and initiated the project. K.K.F., M.S.M., and K.G.V. prepared the materials, collected and analysed the primary data. K.K.F. and A.J.W. performed the entropy analysis. A.J.W. wrote the manuscript.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. Joshua Wand.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figure S1 with Legend and Supplementary Tables S1-S7. (PDF 304 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Frederick, K., Marlow, M., Valentine, K. et al. Conformational entropy in molecular recognition by proteins. Nature 448, 325–329 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing