Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tunable nanowire nonlinear optical probe

Abstract

One crucial challenge for subwavelength optics has been the development of a tunable source of coherent laser radiation for use in the physical, information and biological sciences that is stable at room temperature and physiological conditions. Current advanced near-field imaging techniques using fibre-optic scattering probes1,2 have already achieved spatial resolution down to the 20-nm range. Recently reported far-field approaches for optical microscopy, including stimulated emission depletion3, structured illumination4, and photoactivated localization microscopy5, have enabled impressive, theoretically unlimited spatial resolution of fluorescent biomolecular complexes. Previous work with laser tweezers6,7,8 has suggested that optical traps could be used to create novel spatial probes and sensors. Inorganic nanowires have diameters substantially below the wavelength of visible light and have electronic and optical properties9,10 that make them ideal for subwavelength laser and imaging technology. Here we report the development of an electrode-free, continuously tunable coherent visible light source compatible with physiological environments, from individual potassium niobate (KNbO3) nanowires. These wires exhibit efficient second harmonic generation, and act as frequency converters, allowing the local synthesis of a wide range of colours via sum and difference frequency generation. We use this tunable nanometric light source to implement a novel form of subwavelength microscopy, in which an infrared laser is used to optically trap and scan a nanowire over a sample, suggesting a wide range of potential applications in physics, chemistry, materials science and biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KNbO3 nanowires and their structural analysis.
Figure 2: Radiation from optically trapped single KNbO3 nanowires.
Figure 3: Transmission line scan of metallic surface pattern with laser trapped KNbO3 nanowire.
Figure 4: POPO-3 bead excitation by waveguided SHG signal from an optically trapped KNbO3 nanowire.

Similar content being viewed by others

References

  1. Sanchez, E. J., Novotny, L. & Xie, X. S. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 82, 4014–4017 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Inouye, Y. & Kawata, S. Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19, 159–161 (1994)

    Article  ADS  CAS  Google Scholar 

  3. Donnert, G. et al. Macromolecular-scale resolution in biological fluorescence microscopy. Proc. Natl Acad. Sci. USA 103, 11440–11445 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Ghislain, L. P. & Webb, W. W. Scanning-force microscope based on an optical trap. Opt. Lett. 18, 1678–1680 (1993)

    Article  ADS  CAS  Google Scholar 

  7. Florin, E. L. Pralle, A. Horber, J. K. H. & Stelzer, E. H. K. Photonic force microscope based on optical tweezers and two-photon excitation for biological applications. J. Struct. Biol. 119, 202–211 (1997)

    Article  CAS  Google Scholar 

  8. Pauzauskie, P. J. et al. Optical trapping and integration of semiconductor nanowire assemblies in water. Nature Mater. 5, 97–101 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Yang, P. The chemistry and physics of semiconductor nanowires. MRS Bull. 30, 85–91 (2005)

    Article  CAS  Google Scholar 

  10. Sirbuly, D. J., Law, M., Yan, H. Q. & Yang, P. D. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109, 15190–15213 (2005)

    Article  CAS  Google Scholar 

  11. Johnson, J. C. et al. Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett. 2, 279–283 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Johnson, J. C., Yan, H. Q., Yang, P. D. & Saykally, R. J. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B 107, 8816–8828 (2003)

    Article  CAS  Google Scholar 

  13. Pauzauskie, P. J., Sirbuly, D. J. & Yang, P. D. Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. 96, 14903 (2006)

    Article  Google Scholar 

  14. Qian, F. et al. Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4, 1975–1979 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Huang, Y., Duan, X., Wei, Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Duan, X. F., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Kind, H., Yan, H. Q., Messer, B., Law, M. & Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 14, 158–160 (2002)

    Article  CAS  Google Scholar 

  18. Law, M. et al. Nanoribbon waveguides for subwavelength photonics integration. Science 305, 1269–1273 (2004)

    Article  ADS  CAS  Google Scholar 

  19. Shoji, I., Kondo, T., Kitamoto, A., Shirane, M. & Ito, R. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14, 2268–2294 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Zysset, B., Biaggio, I. & Gunter, P. Refractive indexes of orthorhombic KNbO3. 1. Dispersion and temperature-dependence. J. Opt. Soc. Am. B 9, 380–386 (1992)

    Article  ADS  CAS  Google Scholar 

  21. Kudo, K., Kakiuchi, K., Mizutani, K. & Fukami, T. Characterization of KNbO3 crystal by traveling solvent floating zone (TSFZ) method. Jpn. J.Appl. Phys. Part 1 42, 6099–6101 (2003)

    Article  CAS  Google Scholar 

  22. Magrez, A. et al. Growth of single-crystalline KNbO3 nanostructures. J. Phys. Chem. B 110, 58–61 (2006)

    Article  CAS  Google Scholar 

  23. Biaggio, I., Kerkoc, P., Wu, L. S., Gunter, P. & Zysset, B. Refractive indexes of orthorhombic KNbO3. 2. Phase-matching configurations for nonlinear-optical interactions. J. Opt. Soc. Am. B 9, 507–517 (1992)

    Article  ADS  CAS  Google Scholar 

  24. Knutsen, K. P., Messer, B. M., Onorato, R. M. & Saykally, R. J. Chirped coherent anti-Stokes Raman scattering for high spectral resolution spectroscopy and chemically selective imaging. J. Phys. Chem. B 110, 5854–5864 (2006)

    Article  CAS  Google Scholar 

  25. Agarwal, R. et al. Manipulation and assembly of nanowires with holographic optical traps. Opt. Express 13, 8906–8912 (2005)

    Article  ADS  Google Scholar 

  26. Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared-laser beams. Nature 330, 769–771 (1987)

    Article  ADS  CAS  Google Scholar 

  27. Pohl, D. W., Denk, W. & Lanz, M. Optical stethoscopy—image recording with resolution lambda/20. Appl. Phys. Lett. 44, 651–653 (1984)

    Article  ADS  Google Scholar 

  28. Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. & Kostelak, R. L. Breaking the diffraction barrier - optical microscopy on a nanometric scale. Science 251, 1468–1470 (1991)

    Article  ADS  CAS  Google Scholar 

  29. Florin, E.-L., Pralle, A., Stelzer, E. H. K. & Hörber, J. K. H. Photonic force microscope calibration by thermal noise analysis. Appl. Phys. A 66, 75–78 (1998)

    Article  Google Scholar 

  30. Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Dreyfus Foundation and the US Department of Energy (P.Y.), the University of California, Berkeley (J.L.), the Experimental Physical Chemistry Program of the National Science Foundation, and the NASA SRLDA program (R.M.O. and R.J.S.). Y.N. thanks SONY for a research fellowship and P.J.P. thanks the NSF for a graduate research fellowship. Work at the Lawrence Berkeley National Laboratory was supported by the Office of Science, Basic Energy Sciences, Division of Materials Science of the US Department of Energy. We thank T. Kuykendall for transmission electron microscope observations and the National Center for Electron Microscopy for the use of their facilities, L. Sohn for AFM facilities, N. Switz for comments on the manuscript and W. Liang for microfabrication of gold patterns.

Author Contributions Y.N. performed the synthesis and structural characterization of the KNbO3 wires. Y.N. and R.M.O. designed, performed and analysed the wave mixing experiment. P.J.P. and A.R. designed, performed and analysed the laser trapping and nanoprobe imaging experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Liphardt or Peidong Yang.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information 1

This file contains Supplementary Notes, Supplementary Figures S1-S4 with Legends, Supplementary Table S1 and references. (PDF 314 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, Y., Pauzauskie, P., Radenovic, A. et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1101 (2007). https://doi.org/10.1038/nature05921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05921

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing