Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Isotopic portrayal of the Earth’s upper mantle flow field

Abstract

It is now well established that oceanic plates sink into the lower mantle at subduction zones, but the reverse process of replacing lost upper-mantle material is not well constrained. Even whether the return flow is strongly localized as narrow upwellings or more broadly distributed remains uncertain. Here we show that the distribution of long-lived radiogenic isotopes along the world’s mid-ocean ridges can be used to map geochemical domains, which reflect contrasting refilling modes of the upper mantle. New hafnium isotopic data along the Southwest Indian Ridge delineate a sharp transition between an Indian province with a strong lower-mantle isotopic flavour and a South Atlantic province contaminated by advection of upper-mantle material beneath the lithospheric roots of the Archaean African craton. The upper mantle of both domains appears to be refilled through the seismically defined anomaly underlying South Africa and the Afar plume. Because of the viscous drag exerted by the continental keels, refilling of the upper mantle in the Atlantic and Indian domains appears to be slow and confined to localized upwellings. By contrast, in the unencumbered Pacific domain, upwellings seem comparatively much wider and more rapid.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Isotopic characteristics of SWIR lavas compared to those of other MORB from the Indian, Pacific, South Atlantic and North Atlantic oceans.
Figure 2: Variations of 176 Hf/ 177 Hf, 143 Nd/ 144 Nd, 87 Sr/ 86 Sr, R C and 206 Pb/ 204 Pb along the ridge axis from the North Atlantic to Juan de Fuca.
Figure 3: Spectra of the isotopic signals.
Figure 4: Map view of the plate- and density-driven flow field at the base of the asthenosphere adapted from figure 7 of ref. 14 with permission.

References

  1. Hart, S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984)

    ADS  CAS  Article  Google Scholar 

  2. Castillo, P. The DUPAL anomaly as a trace of the upwelling lower mantle. Nature 336, 667–670 (1988)

    ADS  Article  Google Scholar 

  3. Dupré, B. & Allègre, C. Pb-Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146 (1983)

    ADS  Article  Google Scholar 

  4. Klein, E. M., Langmuir, C. H., Zindler, A., Staudigel, H. & Hamelin, B. Isotope evidence of mantle convection boundary at the Australian-Antarctic Discordance. Nature 333, 623–629 (1988)

    ADS  CAS  Article  Google Scholar 

  5. Hanan, B. B., Blichert-Toft, J., Pyle, D. G. & Christie, D. M. Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432, 91–94 (2004)

    ADS  CAS  PubMed  Article  Google Scholar 

  6. Gurnis, M., Muller, R. D. & Moresi, L. Cretaceous vertical motion of Australia and the Australian-Antarctic Discordance. Science 279, 1499–1504 (1998)

    ADS  CAS  PubMed  Article  Google Scholar 

  7. Janney, P. E., Le Roex, A. P. & Carlson, R. W. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the Central Southwest Indian Ridge (13°E to 47°E). J. Petrol. 46, 2427–2464 (2005)

    ADS  CAS  Article  Google Scholar 

  8. Mahoney, J., Le Roex, A. P., Peng, Z., Fisher, R. L. & Natland, J. H. Southwestern limits of Indian Ocean ridge mantle and origin of low 206Pb/204Pb mid-ocean ridge basalt: Isotope systematics of the Central Southwest Indian Ridge (17–50°E). J. Geophys. Res. 97, 19771–19790 (1992)

    ADS  CAS  Article  Google Scholar 

  9. Horner-Johnson, B. C., Gordon, R. G., Cowles, S. M. & Argus, D. F. The angular velocity of Nubia relative to Somalia and the location of the Nubia–Somalia–Antarctica triple junction. Geophys. J. Int. 162, 221–238 (2005)

    ADS  Article  Google Scholar 

  10. Andres, M., Blichert-Toft, J. & Schilling, J.-G. Nature of the depleted upper mantle beneath the Atlantic: evidence from Hf isotopes in normal mid-ocean ridge basalts from 79°N to 55°S. Earth Planet. Sci. Lett. 225, 89–103 (2004)

    ADS  CAS  Article  Google Scholar 

  11. Blichert-Toft, J. et al. Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge-hot spot interaction in the North Atlantic. Geochem. Geophys. Geosyst. 6 Q01E19 doi: 10.1029/2004GC000788 (2005)

    Article  CAS  Google Scholar 

  12. Meyzen, C. M., Toplis, M. J., Humler, E., Ludden, J. N. & Mével, C. A discontinuity in mantle composition beneath the Southwest Indian Ridge. Nature 421, 731–733 (2003)

    ADS  CAS  PubMed  Article  Google Scholar 

  13. Meyzen, C. M. et al. New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle from MORB of the Southwest Indian Ridge. Geochem. Geophys. Geosyst. 6 Q11K11 doi: 10.1029/2005GC000979 (2005)

    Article  CAS  Google Scholar 

  14. Behn, M. D., Conrad, C. P. & Silver, P. G. Detection of upper mantle flow associated with the African Superplume. Earth Planet. Sci. Lett. 224, 259–274 (2004)

    ADS  CAS  Article  Google Scholar 

  15. Hanan, B. B. & Graham, D. W. Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plume. Science 272, 991–995 (1996)

    ADS  CAS  PubMed  Article  Google Scholar 

  16. Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment—Isotopic evidence. Science 256, 517–520 (1992)

    ADS  CAS  PubMed  Article  Google Scholar 

  17. Agranier, A. et al. The spectra of isotopic heterogeneities along the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 238, 96–109 (2005)

    ADS  CAS  Article  Google Scholar 

  18. Hofmann, A. W. in In The Mantle and Core (ed. Carlson, R. W.) 61–101 (Treatise on Geochemistry, Holland and Turekian, Oxford, 2003)

    Google Scholar 

  19. Kurz, M. D., Le Roex, A. P. & Dick, H. J. B. Isotope geochemistry of the enriched mantle near the Bouvet triple junction. Geochim. Cosmochim. Acta 62, 841–852 (1998)

    ADS  CAS  Article  Google Scholar 

  20. Press, W. H., Flanney, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes: The Art of Scientific Computing 569–576 (University Press, Cambridge, 1992)

    Google Scholar 

  21. Douglass, J., Schilling, J.-G. & Fontignie, D. Plume–ridge interactions of the Discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40°S to 55°S). J. Geophys. Res. 104, 2941–2962 (1999)

    ADS  CAS  Article  Google Scholar 

  22. Hamelin, B., Dupré, B. & Allègre, C. J. Pb-Sr-Nd isotopic data of Indian-Ocean ridges—New evidence of large-scale mapping of mantle heterogeneities. Earth Planet. Sci. Lett. 76, 288–298 (1986)

    ADS  CAS  Article  Google Scholar 

  23. Le Roex, A. P., Dick, H. J. B. & Fisher, R. L. Petrology and geochemistry of MORB from 25° to 46°E along the Southwest Indian Ridge—Evidence for contrasting styles of mantle enrichment. J. Petrol. 30, 947–986 (1989)

    ADS  CAS  Article  Google Scholar 

  24. Rehkämper, M. & Hofmann, A. W. Recycled ocean crust and sediment in Indian Ocean MORB. Earth Planet. Sci. Lett. 147, 93–106 (1997)

    ADS  Article  Google Scholar 

  25. Le Roux, P. J. et al. Mantle heterogeneity beneath the Southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet. Sci. Lett. 203, 479–498 (2002)

    ADS  CAS  Article  Google Scholar 

  26. Kempton, P. D. et al. Sr-Nd-Pb-Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source. Geochem. Geophys. Geosyst. 3 doi: 10.1029/2002GC000320 (2002)

  27. Mahoney, J. J., Natland, J. H., White, W. M., Poreda, R. & Bloomer, S. H. Isotopic and geochemical provinces of the Indian Ocean spreading centers. J. Geophys. Res. 94, 4033–4052 (1989)

    ADS  CAS  Article  Google Scholar 

  28. Andres, M., Blichert-Toft, J. & Schilling, J.-G. Hafnium isotopes in basalts from the southern Mid-Atlantic Ridge from 40°S to 55°S: Discovery and Shona plume-ridge interactions and the role of recycled sediments. Geochem. Geophys. Geosyst. 3 8502 doi: 10.1029/2002GC000324 (2002)

    ADS  Article  Google Scholar 

  29. Storey, M. et al. Contamination of Indian Ocean asthenosphere by the Kerguelen Heard mantle plume. Nature 338, 574–576 (1989)

    ADS  CAS  Article  Google Scholar 

  30. Kamenetsky, V. S. et al. Remnants of Gondwanan continental lithosphere in oceanic upper mantle: evidence from the South Atlantic Ridge. Geology 29, 243–246 (2001)

    ADS  CAS  Article  Google Scholar 

  31. Escrig, S., Capmas, F., Dupré, B. & Allègre, C. J. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature 431, 59–63 (2004)

    ADS  CAS  PubMed  Article  Google Scholar 

  32. Carlson, R. W. et al. Continental growth, preservation and modification in southern Africa. GSA Today 10, 1–7 (2000)

    Google Scholar 

  33. Zhang, S.-Q. et al. Evidence for a widespread Tethyan upper mantle with Indian-ocean-type isotopic characteristics. J. Petrol. 46, 829–858 (2005)

    ADS  CAS  Article  Google Scholar 

  34. Blichert-Toft, J., Frey, F. A. & Albarède, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999)

    CAS  PubMed  Article  Google Scholar 

  35. Bryce, J. G., DePaolo, D. J. & Lassiter, J. C. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem. Geophys. Geosyst. 6 Q09G18 doi: 10.1029/2004GC000809 (2005)

    Article  CAS  Google Scholar 

  36. Gasperini, D. et al. Evidence from Sardinian basalt geochemistry for recycling of plume heads into the earth's mantle. Nature 408, 701–704 (2000)

    ADS  CAS  PubMed  Article  Google Scholar 

  37. Grand, S. P., VanDerHilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. GSA Today 7, 1–6 (1997)

    Google Scholar 

  38. Ritsema, J., Ni, S., Helmberger, D. V. & Crotwell, H. P. Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa. Geophys. Res. Lett. 25, 4245–4248 (1998)

    ADS  Article  Google Scholar 

  39. Helmberger, D. V., Ni, S., Wen, L. & Ritsema, J. Seismic evidence for Ultra Low Velocity Zones beneath Africa and Eastern Atlantic. J. Geophys. Res. 105, 23865–23878 (2000)

    ADS  Article  Google Scholar 

  40. Schilling, J. G., Kingsley, R. H., Hanan, B. H. & McCully, B. L. Nd-Sr-Pb isotopic variations along the Gulf of Aden: Evidence for Afar mantle plume-continental lithosphere interaction. J. Geophys. Res. 97, 10927–10966 (1992)

    ADS  CAS  Article  Google Scholar 

  41. Ritsema, J., Nyblade, A. A., Owens, T. J., Langston, C. A. & VanDecar, J. C. Upper mantle seismic velocity structure beneath Tanzania, East Africa: Implications for the stability of cratonic lithosphere. J. Geophys. Res. 103, 21201–21213 (1998)

    ADS  Article  Google Scholar 

  42. James, D. E., Fouch, M. J., VanDecar, J. C., Van Der Lee, S. & Group, K. S. Tectospheric structure beneath Southern Africa. Geophys. Res. Lett. 28, 2485–2488 (2001)

    ADS  Article  Google Scholar 

  43. Class, C. & Le Roex, A. P. Continental material in the shallow oceanic mantle - How does it get there? Geology 34, 129–132 (2006)

    ADS  CAS  Article  Google Scholar 

  44. Graham, D. W. in Noble Gases in Geochemistry and Cosmochemistry (eds Porcelli, D., Wieler, R. & Ballentine, C.) 247–318 (Mineralogical Society of America, Washington DC, 2002)

    Book  Google Scholar 

  45. Gautheron, C. & Moreira, M. Helium signature of the subcontinental lithospheric mantle. Earth Planet. Sci. Lett. 199, 39–47 (2002)

    ADS  CAS  Article  Google Scholar 

  46. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Effects of multiple phase transitions in a 3-dimensional spherical model of convection in Earth's mantle. J. Geophys. Res. 99, 15877–15901 (1994)

    ADS  Article  Google Scholar 

  47. Tackley, P. J. On the penetration of an endothermic phase transition by upwellings and downwellings. J. Geophys. Res. 100, 15477–15488 (1995)

    ADS  Article  Google Scholar 

  48. Nolet, G., Karato, S.-I. & Montelli, R. Plume fluxes from seismic tomography. Earth Planet. Sci. Lett. 248, 685–699 (2006)

    ADS  CAS  Article  Google Scholar 

  49. Collins, W. J. Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth Planet. Sci. Lett. 205, 225–237 (2003)

    ADS  CAS  Article  Google Scholar 

  50. Zhong, S. & Gurnis, M. Dynamic feedback between a continent like raft and thermal convection. J. Geophys. Res. 98, 12219–12232 (1993)

    ADS  Article  Google Scholar 

  51. Gurnis, M. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332, 695–699 (1988)

    ADS  Article  Google Scholar 

  52. Gordon, R. G. Present Plate Motions and Plate Boundaries (ed. Ahrens, T.) 66–87 (AGU, Washington, 1995)

    Google Scholar 

Download references

Acknowledgements

We thank P. Telouk for assistance with the Nu Plasma HR, and B. Reynard, I. Daniel, P. Oger and F. Chambat for suggestions. We also thank M. Behn for providing the map used to draw Fig. 4, J. Ritsema for sharing unpublished seismic profiles, and L. Dosso and B. Hanan for allowing us to view their unpublished data from the Pacific-Antarctic Ridge. Financial support of the analytical work and publication costs were provided by CNRS-INSU (the programmes DyETI and SEDIT), while IPEV provided access to the Marion Dufresne II for sampling during the EDUL (summer 1997) and SWIFT (winter 2001) cruises.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Meyzen.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information 1

This file contains Supplementary Figures 1-4, Supplementary Table 1, Supplementary Methods, Supplementary Equation and additional references. (PDF 6517 kb)

Supplementary Information 2

This file contains Supplementary Data with the global MORB Sr, Nd, Hf, and Pb isotope data compilation and the calculation formula used in this work, as well as the data sources. (XLS 1420 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyzen, C., Blichert-Toft, J., Ludden, J. et al. Isotopic portrayal of the Earth’s upper mantle flow field. Nature 447, 1069–1074 (2007). https://doi.org/10.1038/nature05920

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05920

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing