Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deposition of metal films on an ionic liquid as a basis for a lunar telescope


An optical/infrared telescope of 20–100 m aperture located on the Moon would be able to observe objects 100 to 1,000 times fainter than the proposed next generation of space telescopes1. The infrared region of the spectrum is particularly important for observations of objects at redshifts z > 7. The apparent simplicity and low mass of a liquid mirror telescope, compared with a traditional pointable glass mirror, suggest that the concept should be considered further. A previously proposed liquid mirror telescope, based upon a spinning liquid metallic alloy2, is not appropriate for infrared applications, which will require a liquid below 130 K. Here we report the successful coating of an ionic liquid with silver. The surface is smooth and the silver coating is stable on a timescale of months. The underlying ionic liquid does not evaporate in a vacuum and remains liquid down to a temperature of 175 K. Given that there are 106 simple and 1018 ternary ionic liquids, it should be possible to synthesize liquids with even lower melting temperatures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reflectivity curves obtained for silver-coated liquids.
Figure 2: Three-dimensional map of a small section of a silver-coated liquid mirror.


  1. Gardner, J. P. et al. The James Webb Space Telescope. Space Sci. Rev. 123, 485–606 (2006)

    Article  ADS  Google Scholar 

  2. Borra, E. F. The case for liquid mirror in a lunar telescope. Astrophys. J. 373, 317–321 (1991)

    Article  ADS  Google Scholar 

  3. Girard, L. & Borra, E. F. Optical tests of a 2.5-m diameter liquid mirror. II. Behavior under external perturbations and scattered light measurements. Appl. Opt. 36, 6278–6288 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Ninane, N. M. &. Jamar, C. A. Parabolic liquid mirrors in optical shop testing. Appl. Opt. 35, 6131–6139 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Hickson, P. & Mulrooney, M. K. University of British Columbia—NASA multi-narrowband survey. I. Description and photometric properties of the survey. Astrophys. J. 115 (Suppl.). 35–42 (1998)

    Article  ADS  Google Scholar 

  6. Cabanac, R. Borra, E. F. & Beauchemin, M. A search for peculiar objects with the NASA Orbital Debris Observatory 3-m Liquid Mirror Telescope. Astrophys. J. 509, 309–323 (1998)

    Article  ADS  Google Scholar 

  7. Hickson, P. Applied optics, hydrodynamics of rotating liquid mirrors. I. Synchronous disturbances. Appl. Opt. 45, 8052–8062 (2006)

    Article  ADS  Google Scholar 

  8. Hickson, P. & Racine, R. Image quality of liquid-mirror telescopes. Publ. Astron. Soc. Pacif. 119, 456–465 (2007)

    Article  ADS  Google Scholar 

  9. Hickson, P. et al. The Large Zenith Telescope—a 6-meter liquid-mirror telescope. Publ. Astron. Soc. Pacif. 119, 444–455 (2007)

    Article  ADS  Google Scholar 

  10. Hickson, P. & Lanzetta, K. M. Large Aperture Mirror Array (LAMA): conceptual design for a distributed-aperture 42-meter telescope. Proc. SPIE 4840, 273–282 (2003)

    Article  ADS  Google Scholar 

  11. Hickson, P. & Lanzetta, K. M. Large Aperture Mirror Array (LAMA): project overview. Proc. SPIE 532, 115–125 (2004)

    Article  Google Scholar 

  12. Giavalisco, M. M. Lyman-break galaxies. Annu. Rev. Astron. Astrophys. 40, 579–642 (2002)

    Article  ADS  Google Scholar 

  13. Barkana, R. & Loeb, A. In the beginning: the first sources of light and the reionization of the universe. Phys. Rep. 349, 125–238 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Bromm, V., Coppi, P. S. & Larson, R. B. Forming the first stars in the universe: the fragmentation of primordial gas. Astrophys. J. 527, L5–L8 (1999)

    Article  ADS  CAS  Google Scholar 

  15. Abel, T., Bryan, G. L. & Norman, M. L. The formation and fragmentation of primordial molecular clouds. Astrophys. J. 540, 39–44 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Borra, E. F. et al. Nanoengineered astronomical optics. Astron. Astrophys. 419, 777–782 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Déry, J.-P., Gingras, J., Yockell-Lelièvre, H., Borra, E. F. & Ritcey, A. M. Characterization of reflective silver nanoparticle surface films. Colloids Surf. A 279, 79–86 (2006)

    Article  Google Scholar 

  18. Wasserscheid, P. & Welton, T. Ionic Liquids in Synthesis (Wiley-VCH, Weinheim, 2003)

    Google Scholar 

  19. Stark, A. & Seddon, K. R. in Kirk-Othmer Encyclopaedia of Chemical Technology (ed. Seidel, A.) 836–920 (John Wiley & Sons, Hoboken, New Jersey, 2007)

    Google Scholar 

  20. Earle, M. J. et al. The distillation and volatility of ionic liquids. Nature 439, 831–834 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Deetlefs, M. & Seddon, K. R. Ionic liquids: fact and fiction. Chim. Oggi 24, 16–23 (2006)

    CAS  Google Scholar 

  22. MacFarlane, D. R. & Seddon, K. R. Ionic liquids—Progress on the fundamental issues. Aust. J. Chem. 60, 3–5 (2007)

    Article  CAS  Google Scholar 

  23. Holbrey, J. D. et al. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 4, 407–413 (2002)

    Article  CAS  Google Scholar 

  24. Seddon, K. R. in The International George Papatheodorou Symposium: Proceedings (eds Boghosian, S., Dracopoulos, V., Kontoyannis, C. G. & Voyiatzis, G. A.) 131–135 (Institute of Chemical Engineering and High Temperature Chemical Processes, Patras, 1999)

    Google Scholar 

  25. Fonseca, G. S. et al. Synthesis and characterization of catalytic iridium nanoparticles in imidazolium ionic liquids. J. Colloid Interf. Sci. 301, 193–204 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Itoh, H., Naka, K. & Chujo, Y. Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J. Am. Chem. Soc. 126, 3026–3027 (2004)

    Article  CAS  Google Scholar 

  27. Warren, S. C. et al. Generalized route to metal nanoparticles with liquid behavior. J. Am. Chem. Soc. 128, 12074–12075 (2006)

    Article  CAS  Google Scholar 

Download references


We thank NASA for a NIAC grant and the Canadian Space Agency for primary funding. We also gratefully acknowledge the input from M. Deetlefs; K.R.S. also thanks the EPSRC for support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ermanno F. Borra.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion. It includes information on field of regard issues, technical details and ionic liquids. (PDF 1047 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borra, E., Seddiki, O., Angel, R. et al. Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447, 979–981 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing