Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris

Abstract

The interstellar medium is enriched primarily by matter ejected from old, evolved stars1,2. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry3,4,5. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio6. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues7. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the molecular outflows in VY CMa, superimposed on the HST infrared image.
Figure 2: Sample molecular spectra from VY CMa, measured with the Arizona Radio Observatory’s Sub-millimeter Telescope (SMT), showing the variation in line profiles.
Figure 3: Comparison of spectra for the metastable isomers HCN and HNC in VY CMa.

Similar content being viewed by others

References

  1. Marvel, K. B. No methane here. The HCN puzzle: Searching for CH3OH and C2H in oxygen-rich stars. Astron. J. 130, 261–268 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Wilson, L. A. Mass loss from cool stars: Impact on the evolution of stars and stellar populations. Annu. Rev. Astron. Astrophys. 38, 573–611 (2000)

    Article  ADS  Google Scholar 

  3. McCabe, E. M., Smith, R. C. & Clegg, R. E. S. Molecular abundances in IRC+10216. Nature 281, 263–266 (1979)

    Article  ADS  CAS  Google Scholar 

  4. Glassgold, A. E. Circumstellar photochemistry. Annu. Rev. Astron. Astrophys. 34, 241–278 (1996)

    Article  ADS  CAS  Google Scholar 

  5. Ziurys, L. M. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life. Proc. Natl Acad. Sci. USA 103, 12274–12279 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Iben, I. & Renzini, A. Asymptotic giant branch evolution and beyond. Annu. Rev. Astron. Astrophys. 21, 271–342 (1983)

    Article  ADS  CAS  Google Scholar 

  7. Oloffson, H. Molecules in envelopes around AGB-stars. Astrophys. Space Sci. 251, 31–39 (1997)

    Article  ADS  Google Scholar 

  8. Cherchneff, I. A chemical study of the inner winds of asymptotic giant branch stars. Astron. Astrophys. 456, 1001–1012 (2006)

    Article  ADS  CAS  Google Scholar 

  9. Anders, E. & Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989)

    Article  ADS  CAS  Google Scholar 

  10. Duari, D., Cherchneff, I. & Willacy, K. Carbon molecules in the inner wind of the oxygen-rich Mira IK Tauri. Astron. Astrophys. 341, L47–L50 (1999)

    ADS  CAS  Google Scholar 

  11. Wallerstein, G. & Gonzalez, G. The spectrum of VY Canis Majoris in 2000 February. Publ. Astron. Soc. Pacif. 113, 954–956 (2001)

    Article  ADS  Google Scholar 

  12. Smith, N. et al. The asymmetric nebula surrounding the extreme red supergiant VY Canis Majoris. Astron. J. 121, 1111–1125 (2001)

    Article  ADS  Google Scholar 

  13. Sahai, R. & Wannier, P. G. SO and SO2 in mass-loss envelopes of red giants: Probes of nonequilibrium circumstellar chemistry and mass-loss rates. Astrophys. J. 394, 320–339 (1992)

    Article  ADS  CAS  Google Scholar 

  14. Bowers, P. F., Johnston, K. J. & Spencer, J. H. Circumstellar envelope structure of late-type stars. Astrophys. J. 274, 733–754 (1983)

    Article  ADS  CAS  Google Scholar 

  15. Muller, S. et al. The molecular envelope around the red supergiant VY CMa. Astrophys. J. 656, 1109–1120 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Kemper, F. et al. Mass loss and rotational CO emission from asymptotic giant branch stars. Astron. Astrophys. 407, 609–629 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Nercessian, E., Guilloteau, S., Omont, A. & Benayoun, J. J. HCN emission and nitrogen-bearing molecules in oxygen-rich circumstellar envelopes. Astron. Astrophys. 210, 225–235 (1989)

    ADS  CAS  Google Scholar 

  18. Humphreys, R. M., Davidson, K., Ruch, G. & Wallerstein, G. High-resolution, long-slit spectroscopy of VY Canis Majoris: The evidence for localized high mass loss events. Astron. J. 129, 492–510 (2005)

    Article  ADS  CAS  Google Scholar 

  19. Smith, N. Spatially extended K I λ7699 emission in the nebula of VY CMa: kinematics and geometry. Mon. Not. R. Astron. Soc. 349, L31–L35 (2004)

    Article  ADS  Google Scholar 

  20. Schwarzschild, M. On the scale of photospheric convection in red giants and supergiants. Astrophys. J. 195, 137–144 (1975)

    Article  ADS  CAS  Google Scholar 

  21. Lim, J., Carilli, C. L., White, S. M., Beasley, A. J. & Marson, R. G. Large convective cells as the source of Betelgeuse’s extended atmosphere. Nature 392, 575–577 (1998)

    Article  ADS  CAS  Google Scholar 

  22. Highberger, J. L., Thomson, K. J., Young, P. A., Arnett, D. & Ziurys, L. M. The salty scrambled egg: Detection of NaCl toward CRL 2688. Astrophys. J. 593, 393–401 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Cernicharo, J., Guelin, M. & Kahane, C. A λ2 mm molecular line survey of the C-star envelope IRC+10216. Astron. Astrophys. 142 (Suppl.). 181–215 (2000)

    ADS  CAS  Google Scholar 

  24. Szczerba, R., Schmidt, M. R. & Pulecka, M. Mixed chemistry phenomenon during late stages of stellar evolution. Balt. Astron. 16, 134–141 (2007)

    ADS  Google Scholar 

  25. Bujarrabal, V., Fuente, A. & Omont, A. Molecular observations of O- and C-rich circumstellar envelopes. Astron. Astrophys. 285, 247–271 (1994)

    ADS  CAS  Google Scholar 

  26. Schilke, P. et al. A study of HCN, HNC and their isotopomers in OMC-1. Astron. Astrophys. 256, 595–612 (1992)

    ADS  CAS  Google Scholar 

  27. Nejad, L. A. M. & Millar, T. J. Chemical modeling of molecular sources – VI. Carbon-bearing molecules in oxygen-rich circumstellar envelopes. Mon. Not. R. Astron. Soc. 230, 79–86 (1988)

    Article  ADS  CAS  Google Scholar 

  28. Zubko, V., Li, D., Lim, T., Feuchtgruber, H. & Harwit, M. Observations of water vapour outflow from NML Cygnus. Astrophys. J. 610, 427–435 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Monnier, J. D., Danchi, W. C., Hale, D. S., Tuthill, P. G. & Townes, C. H. Mid-infrared interferometry on spectral lines. III. Ammonia and silane around IRC+10216 and VY Canis Majoris. Astrophys. J. 543, 868–879 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Lauria, E. F. et al. First Astronomical Observations with an ALMA Band 6 (211–275 GHz) Sideband-Separating SIS Mixer-preamp (ALMA Memo No. 553); 〈www.alma.nrao.edu/memos/〉 (2006)

Download references

Acknowledgements

We thank the National Radio Astronomy Observatory for the loan of the ALMA Band 6 mixer system, and A. Lichtenberger and the University of Virginia Microfabrication Laboratory for supplying the mixer junctions. This research is partly supported by the NSF Astronomy and NASA Astrobiology programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Ziurys.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information 1

This file contains Supplementary Discussion with a brief description of the model employed for molecular abundance derivations and additional references. (PDF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziurys, L., Milam, S., Apponi, A. et al. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris. Nature 447, 1094–1097 (2007). https://doi.org/10.1038/nature05905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05905

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing