Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging

Abstract

Modification of proteins with ubiquitin or ubiquitin-like proteins (UBLs) by means of an E1–E2–E3 cascade controls many signalling networks1,2,3. Ubiquitin conjugation involves adenylation and thioesterification of the carboxy-terminal carboxylate of ubiquitin by the E1-activating enzyme Ube1 (Uba1 in yeast), followed by ubiquitin transfer to an E2-conjugating enzyme through a transthiolation reaction4,5,6,7. Charged E2s function with E3s to ubiquitinate substrates1. It is currently thought that Ube1/Uba1 is the sole E1 for charging of E2s with ubiquitin in animals and fungi1,8. Here we identify a divergent E1 in vertebrates and sea urchin, Uba6, which specifically activates ubiquitin but not other UBLs in vitro and in vivo. Human Uba6 and Ube1 have distinct preferences for E2 charging in vitro, and their specificity depends in part on their C-terminal ubiquitin-fold domains, which recruit E2s. In tissue culture cells, Uba6 is required for charging a previously uncharacterized Uba6-specific E2 (Use1), whereas Ube1 is required for charging the cell-cycle E2s Cdc34A and Cdc34B. Our data reveal unexpected complexity in the pathways that control the conjugation of ubiquitin, in which dual E1s orchestrate the charging of distinct cohorts of E2s.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uba6 activates ubiquitin in vitro.
Figure 2: Uba6 activates ubiquitin in vivo.
Figure 3: Systematic analysis of E2-conjugating enzymes for targets of Uba6.
Figure 4: Distinct requirements for charging of the ubiquitin conjugating enzymes Use1 and Cdc34 in vivo.

Similar content being viewed by others

References

  1. Pickart, C. M. & Eddins, M. J. Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta 1695, 55–72 (2004)

    Article  CAS  Google Scholar 

  2. Huang, D. T., Walden, H., Duda, D. & Schulman, B. A. Ubiquitin-like protein activation. Oncogene 23, 1958–1971 (2004)

    Article  CAS  Google Scholar 

  3. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006)

    Article  CAS  Google Scholar 

  4. Ciechanover, A., Elias, S., Heller, H. & Hershko, A. ‘Covalent affinity’ purification of ubiquitin-activating enzyme. J. Biol. Chem. 257, 2537–2542 (1982)

    Article  CAS  Google Scholar 

  5. Haas, A. L., Warms, J. V., Hershko, A. & Rose, I. A. Ubiquitin-activating enzyme. Mechanism and role in protein–ubiquitin conjugation. J. Biol. Chem. 257, 2543–2548 (1982)

    Article  CAS  Google Scholar 

  6. Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin–protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983)

    Article  CAS  Google Scholar 

  7. Pickart, C. M. & Rose, I. A. Functional heterogeneity of ubiquitin carrier proteins. J. Biol. Chem. 260, 1573–1581 (1985)

    Article  CAS  Google Scholar 

  8. Pickart, C. M. Back to the future with ubiquitin. Cell 116, 181–190 (2004)

    Article  CAS  Google Scholar 

  9. Finley, D., Ciechanover, A. & Varshavsky, A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984)

    Article  CAS  Google Scholar 

  10. Ciechanover, A., Finley, D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984)

    Article  CAS  Google Scholar 

  11. McGrath, J. P., Jentsch, S. & Varshavsky, A. UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10, 227–236 (1991)

    Article  CAS  Google Scholar 

  12. Odorisio, T., Mahadevaiah, S. K., McCarrey, J. R. & Burgoyne, P. S. Transcriptional analysis of the candidate spermatogenesis gene Ube1y and of the closely related Ube1x shows that they are coexpressed in spermatogonia and spermatids but are repressed in pachytene spermatocytes. Dev. Biol. 180, 336–343 (1996)

    Article  CAS  Google Scholar 

  13. Lake, M. W., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex. Nature 414, 325–329 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Duda, D. M., Walden, H., Sfondouris, J. & Schulman, B. A. Structural analysis of Escherichia coli ThiF. J. Mol. Biol. 349, 774–786 (2005)

    Article  CAS  Google Scholar 

  15. Lehmann, C., Begley, T. P. & Ealick, S. E. Structure of the Escherichia coli ThiS–ThiF complex, a key component of the sulfur transfer system in thiamin biosynthesis. Biochemistry 45, 11–19 (2006)

    Article  CAS  Google Scholar 

  16. Walden, H., Podgorski, M. S. & Schulman, B. A. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422, 330–334 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Lois, L. M. & Lima, C. D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005)

    Article  CAS  Google Scholar 

  18. Bencsath, K. P., Podgorski, M. S., Pagala, V. R., Slaughter, C. A. & Schulman, B. A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 (2002)

    Article  CAS  Google Scholar 

  19. Huang, D. T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8’s E1. Mol. Cell 17, 341–350 (2005)

    Article  CAS  Google Scholar 

  20. Huang, D. T. et al. Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity. Nature 445, 394–398 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Haas, A. L. & Bright, P. M. The resolution and characterization of putative ubiquitin carrier protein isozymes from rabbit reticulocytes. J. Biol. Chem. 263, 13258–13267 (1988)

    Article  CAS  Google Scholar 

  22. Komatsu, M. et al. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23, 1977–1986 (2004)

    Article  CAS  Google Scholar 

  23. Gu, X. et al. Cloning and characterization of a gene encoding the human putative ubiquitin conjugating enzyme E2Z (UBE2Z). Mol. Biol. Rep. (in the press)

  24. Walden, H. et al. The structure of the APPBP1–UBA3–NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol. Cell 12, 1427–1437 (2003)

    Article  CAS  Google Scholar 

  25. Eletr, Z. M., Huang, D. T., Duda, D. M., Schulman, B. A. & Kuhlman, B. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol. 12, 933–934 (2005)

    Article  CAS  Google Scholar 

  26. Booth, J. W., Kim, M. K., Jankowski, A., Schreiber, A. D. & Grinstein, S. Contrasting requirements for ubiquitylation during Fc receptor-mediated endocytosis and phagocytosis. EMBO J. 21, 251–258 (2002)

    Article  CAS  Google Scholar 

  27. Shringarpure, R., Grune, T., Mehlhase, J. & Davies, K. J. Ubiquitin conjugation is not required for the degradation of oxidized proteins by proteasome. J. Biol. Chem. 278, 311–318 (2003)

    Article  CAS  Google Scholar 

  28. Chen, X. et al. N-acetylation and ubiquitin-independent proteasomal degradation of p21Cip1. Mol. Cell 16, 839–847 (2004)

    Article  CAS  Google Scholar 

  29. Su, A. I. et al. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl Acad. Sci. USA 99, 4465–4470 (2002)

    Article  ADS  CAS  Google Scholar 

  30. Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–6067 (2004)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Finley, B. Tansey, S. Elledge, J. Lou, R. Mulligan and B. Schulman for technical assistance, reagents and/or discussions, and B. Schulman and A. Sali for assistance with Modeller software. This work was supported by grants from the National Institutes of Health to J.W.H. and to S.P.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Wade Harper.

Ethics declarations

Competing interests

Sequences for human Uba6 and Use1 have been deposited in the GenBank database under accession numbers EF623992 and EF623993, respectively. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information 1

This file contains Supplementary Notes, Supplementary Methods, Supplementary Figures S1-S7 with Legends, Supplementary Table S1 and additional references. (PDF 7147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, J., Li, X., Gygi, S. et al. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007). https://doi.org/10.1038/nature05902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05902

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing