Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ

Abstract

Pairing of electrons in conventional superconductors occurs at the superconducting transition temperature Tc, creating an energy gap Δ in the electronic density of states (DOS)1. In the high-Tc superconductors, a partial gap in the DOS exists for a range of temperatures above Tc (ref. 2). A key question is whether the gap in the DOS above Tc is associated with pairing, and what determines the temperature at which incoherent pairs form. Here we report the first spatially resolved measurements of gap formation in a high-Tc superconductor, measured on Bi2Sr2CaCu2O8+δ samples with different Tc values (hole concentration of 0.12 to 0.22) using scanning tunnelling microscopy. Over a wide range of doping from 0.16 to 0.22 we find that pairing gaps nucleate in nanoscale regions above Tc. These regions proliferate as the temperature is lowered, resulting in a spatial distribution of gap sizes in the superconducting state3,4,5. Despite the inhomogeneity, we find that every pairing gap develops locally at a temperature Tp, following the relation 2Δ/kBTp = 7.9 ± 0.5. At very low doping (≤0.14), systematic changes in the DOS indicate the presence of another phenomenon6,7,8,9, which is unrelated and perhaps competes with electron pairing. Our observation of nanometre-sized pairing regions provides the missing microscopic basis for understanding recent reports10,11,12,13 of fluctuating superconducting response above Tc in hole-doped high-Tc copper oxide superconductors.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spectroscopy at a specific atomic site as a function of temperature (d I /d V versus sample bias V).
Figure 2: Gap evolution for overdoped ( T c = 65 K) samples.
Figure 3: Gap evolution at different dopings.
Figure 4: Pseudogap and pairing gaps in underdoped samples.
Figure 5: Schematic phase diagram for Bi2Sr2CaCu2O8+δ.

References

  1. Tinkham, M. Introduction to Superconductivity (McGraw-Hill, New York, 1975)

    Google Scholar 

  2. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999)

    ADS  CAS  Article  Google Scholar 

  3. Howald, C., Fournier, P. & Kapitulnik, A. Inherent inhomogeneities in tunnelling spectra of Bi2Sr2CaCu2O8-x crystals in the superconducting state. Phys. Rev. B 64, 100504(R) (2001)

    ADS  Article  Google Scholar 

  4. Pan, S. H. et al. Microscopic electronic inhomogeneity in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 413, 282–285 (2001)

    ADS  CAS  Article  Google Scholar 

  5. McElroy, K. et al. Atomic-scale sources and mechanism of nanoscale electronic disorder in Bi2Sr2CaCu2O8+δ . Science 309, 1048–1052 (2005)

    ADS  CAS  Article  Google Scholar 

  6. Tallon, J. L. & Loram, J. W. The doping dependence of T*—what is the real high-Tc phase diagram? Physica C 349, 53–68 (2001)

    ADS  CAS  Article  Google Scholar 

  7. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)

    ADS  CAS  Article  Google Scholar 

  8. Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005)

    ADS  CAS  Article  Google Scholar 

  9. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–86 (2006)

    ADS  CAS  Article  Google Scholar 

  10. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999)

    ADS  CAS  Article  Google Scholar 

  11. Xu, Z. A., Ong, N. P., Wang, Y., Kakeshita, T. & Uchida, S. Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4 . Nature 406, 486–488 (2000)

    ADS  CAS  Article  Google Scholar 

  12. Wang, Y. et al. Field-enhanced diamagnetism in the pseudogap state of the cuprate Bi2Sr2CaCu2O8+δ superconductor in an intense magnetic field. Phys. Rev. Lett. 95, 247002 (2005)

    ADS  Article  Google Scholar 

  13. Wang, Y., Li, L. & Ong, N. P. Nernst effect in high-Tc superconductors. Phys. Rev. B 73, 024510 (2006)

    ADS  Article  Google Scholar 

  14. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    ADS  CAS  Article  Google Scholar 

  15. Randeria, M. in Proc. Int. School of Physics 'Enrico Fermi' on Conventional and High Temperature Superconductors (eds Iadonisi, G., Schrieffer, J. R. & Chiafalo, M. L.) 53–75 (IOS Press, Amsterdam, 1998)

    Google Scholar 

  16. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004)

    ADS  CAS  Article  Google Scholar 

  17. Hanaguri, T. et al. A 'checkerboard' electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2 . Nature 430, 1001–1005 (2004)

    ADS  CAS  Article  Google Scholar 

  18. McElroy, K. et al. Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 94, 197005 (2005)

    ADS  CAS  Article  Google Scholar 

  19. Renner, Revaz, B., Genoud, J.-Y., Kadowaki, K. & Fischer, Ø. Pseudogap precursor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 80, 149–152 (1998)

    ADS  CAS  Article  Google Scholar 

  20. Kugler, M., Fischer, Ø., Renner, Ono, S. & Ando, Y. Scanning tunneling spectroscopy of Bi2Sr2CuO6+δ: new evidence for the common origin of the pseudogap and superconductivity. Phys. Rev. Lett. 86, 4911–4914 (2001)

    ADS  CAS  Article  Google Scholar 

  21. Deutscher, G. Coherence and single particle excitations in high temperature superconductors. Nature 397, 410–412 (1999)

    ADS  CAS  Article  Google Scholar 

  22. Andersen, B. M., Melikyan, A., Nunner, T. S. & Hirschfeld, P. J. Thermodynamic transitions in inhomogeneous d-wave superconductors. Phys. Rev. B 74, 060501(R) (2006)

    ADS  Article  Google Scholar 

  23. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 397, 157–160 (1998)

    ADS  Article  Google Scholar 

  24. Valla, T., Fedorov, A. V., Lee, J., Davis, J. C. & Gu, G. D. The ground state of the pseudogap in cuprate superconductors. Science 314, 1914–1916 (2006)

    ADS  CAS  Article  Google Scholar 

  25. Tanaka, K. et al. Distinct Fermi-momentum-dependent energy gaps in deeply underdoped Bi2212. Science 314, 1910–1913 (2006)

    ADS  CAS  Article  Google Scholar 

  26. Le Tacon, M. et al. Two energy scales and two distinct quasiparticle dynamics in the superconducting state of underdoped cuprates. Nature Phys. 2, 537–543 (2006)

    ADS  CAS  Article  Google Scholar 

  27. Damascelli, A., Hussain, Z. & Shen, Z.-X. Angled-resolved photoemission studies of cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003)

    ADS  CAS  Article  Google Scholar 

  28. Carbotte, J. P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990)

    ADS  CAS  Article  Google Scholar 

  29. Balatsky, A. V. & Zhu, J.-X. Local strong coupling pairing in d-wave supercondcutors with inhomogeneous bosonic modes. Phys. Rev. B 74, 094517 (2006)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Princeton University, the NSF-DMR, and the NSF-MRSEC programme through the Princeton Center for Complex Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Yazdani.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures S1-S7 with Legends and additional references. (PDF 1278 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gomes, K., Pasupathy, A., Pushp, A. et al. Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ. Nature 447, 569–572 (2007). https://doi.org/10.1038/nature05881

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05881

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing