Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor

Abstract

Despite twenty years of research, the phase diagram of high-transition-temperature superconductors remains enigmatic1,2. A central issue is the origin of the differences in the physical properties of these copper oxides doped to opposite sides of the superconducting region. In the overdoped regime, the material behaves as a reasonably conventional metal, with a large Fermi surface3,4. The underdoped regime, however, is highly anomalous and appears to have no coherent Fermi surface, but only disconnected ‘Fermi arcs’5,6. The fundamental question, then, is whether underdoped copper oxides have a Fermi surface, and if so, whether it is topologically different from that seen in the overdoped regime. Here we report the observation of quantum oscillations in the electrical resistance of the oxygen-ordered copper oxide YBa2Cu3O6.5, establishing the existence of a well-defined Fermi surface in the ground state of underdoped copper oxides, once superconductivity is suppressed by a magnetic field. The low oscillation frequency reveals a Fermi surface made of small pockets, in contrast to the large cylinder characteristic of the overdoped regime. Two possible interpretations are discussed: either a small pocket is part of the band structure specific to YBa2Cu3O6.5 or small pockets arise from a topological change at a critical point in the phase diagram. Our understanding of high-transition-temperature (high-Tc) superconductors will depend critically on which of these two interpretations proves to be correct.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Phase diagram of high-temperature superconductors.
Figure 2: Hall resistance of YBa2Cu3O6.5.
Figure 3: Quantum oscillations in YBCO.
Figure 4: Fermi surface of YBCO from band structure calculations.

References

  1. 1

    Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high Tc? Adv. Phys. 54, 715–733 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Hussey, N. E. et al. Observation of a coherent three-dimensional Fermi surface in a high-transition temperature superconductor. Nature 425, 814–817 (2003)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Platé, M. et al. Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+δ by ARPES. Phys. Rev. Lett. 95, 077001 (2005)

    ADS  Article  Google Scholar 

  5. 5

    Norman, M. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Shen, K. et al. Nodal quasiparticles and antinodal charge ordering in Ca2-xNaxCuO2Cl2 . Science 307, 901–904 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wosnitza, J. et al. Shubnikov-de Haas effect in the superconducting state of an organic superconductor. Phys. Rev. B 62, 11973–11976 (2000)

    ADS  Article  Google Scholar 

  8. 8

    Fowler, C. M. et al. de Haas-van Alphen effect and Fermi surface of YBa2Cu3O6. 97 . Phys. Rev. Lett. 68, 534–537 (1992)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Kido, G., Komorita, K., Katayama-Yoshida, H. & Takahashi, T. de Haas-van Alphen measurement of YBa2Cu3O7 . J. Phys. Chem. Solids 52, 1465–1470 (1991)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Haanappel, E. G. et al. The de Haas-van Alphen effect in YBa2Cu3O7-δ . J. Phys. Chem. Solids 54, 1261–1267 (1993)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Springford, M., Harrison, N., Meeson, P. & Probst, P.-A. Comment on “de Haas-van Alphen effect and Fermi surface of YBa2Cu3O6. 97”. Phys. Rev. Lett. 69, 2453 (1992)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Pickett, W. E., Cohen, R. E. & Krakauer, H. Precise band structure and Fermi-surface calculation for YBa2Cu3O7: Importance of three-dimensional dispersion. Phys. Rev. B 42, 8764–8767 (1990)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Andersen, O. K., Liechtenstein, A. I., Jepsen, O. & Paulsen, F. LDA energy bands, low-energy Hamiltonians, t’, t”, t ,(k), and J . J. Phys. Chem. Solids 56, 1573–1591 (1995)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Campuzano, J. C. et al. Fermi surfaces of YBa2Cu3O6. 9 as seen by angle-resolved photoemission. Phys. Rev. Lett. 64, 2308–2311 (1990)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Nakayama, K. et al. Bulk and surface low-energy excitations in YBa2Cu3O7-δ studied by high-resolution angle-resolved photoemission spectroscopy. Phys. Rev. B 75, 014513 (2007)

    ADS  Article  Google Scholar 

  16. 16

    Bascones, E. et al. Optical conductivity of ortho-II YBa2Cu3O6. 5 . Phys. Rev. B 71, 012505 (2005)

    ADS  Article  Google Scholar 

  17. 17

    Lin, J. & Millis, A. J. Theory of low-temperature Hall effect in electron-doped cuprates. Phys. Rev. B 72, 214506 (2005)

    ADS  Article  Google Scholar 

  18. 18

    Mackenzie, A. P., Julian, S. R., Sinclair, D. C. & Lin, C. T. Normal-state magneto-transport in superconducting Tl2Ba2CuO6+y to millikelvin temperatures. Phys. Rev. B 53, 5848–5855 (1996)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Pereg-Barnea, T. et al. Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on Gd doped single crystals. Phys. Rev. B 69, 184513 (2004)

    ADS  Article  Google Scholar 

  20. 20

    Loram, J. W. et al. Specific heat evidence on the normal state pseudogap. J. Phys. Chem. Solids 59, 2091–2094 (1998)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    ADS  Article  Google Scholar 

  22. 22

    Lee, P. A. & Wen, X.-G. Vortex structure in underdoped cuprates. Phys. Rev. B 63, 224517 (2001)

    ADS  Article  Google Scholar 

  23. 23

    Oganesyan, V., Kivelson, S. A. & Fradkin, E. Quantum theory of a nematic Fermi fluid. Phys. Rev. B 64, 195109 (2001)

    ADS  Article  Google Scholar 

  24. 24

    Yang, K.-Y., Rice, T. M. & Zhang, F.-C. Phenomenological theory of the pseudogap state. Phys. Rev. B 73, 174501 (2006)

    ADS  Article  Google Scholar 

  25. 25

    Stanescu, T. D. & Kotliar, G. Fermi arcs and hidden zeros of the Green function in the pseudogap state. Phys. Rev. B 74, 125110 (2006)

    ADS  Article  Google Scholar 

  26. 26

    Kyung, B. et al. Pseudogap induced by short-range spin correlations in a doped Mott insulator. Phys. Rev. B 73, 165114 (2006)

    ADS  Article  Google Scholar 

  27. 27

    Liang, R., Bonn, D. A. & Hardy, W. N. Preparation and X-ray characterization of highly ordered ortho-II phase YBa2Cu3O6. 50 single crystals. Physica C 336, 57–62 (2000)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Liang, R., Bonn, D. A. & Hardy, W. N. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006)

    ADS  Article  Google Scholar 

  29. 29

    Portugall, O. et al. The LNCMP: a pulsed-field user-facility in Toulouse. Physica B 346–347, 668–672 (2004)

    Google Scholar 

Download references

Acknowledgements

We thank R. T. Brisson, G. G. Lonzarich, G. L. J. A. Rikken and A.-M. S. Tremblay for discussions, and M. Nardone and A. Audouard for their help with the experiment and analysis. We acknowledge support from the Canadian Institute for Advanced Research and the LNCMP, and funding from NSERC, FQRNT and a Canada Research Chair. Part of this work was supported by the French ANR IceNET and EuroMagNET.

Author Contributions N.D.-L. and C.P. contributed equally to this work.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Cyril Proust or Louis Taillefer.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures S1-S5 with Legends. (PDF 760 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Doiron-Leyraud, N., Proust, C., LeBoeuf, D. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007). https://doi.org/10.1038/nature05872

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing