Letter | Published:

The hottest planet

Nature volume 447, pages 691693 (07 June 2007) | Download Citation

Abstract

Of the over 200 known extrasolar planets, just 14 pass in front of and behind their parent stars as seen from Earth. This fortuitous geometry allows direct determination of many planetary properties1. Previous reports of planetary thermal emission2,3,4,5 give fluxes that are roughly consistent with predictions based on thermal equilibrium with the planets’ received radiation, assuming a Bond albedo of 0.3. Here we report direct detection of thermal emission from the smallest known transiting planet, HD 149026b, that indicates a brightness temperature (an expression of flux) of 2,300 ± 200 K at 8 µm. The planet’s predicted temperature for uniform, spherical, blackbody emission and zero albedo (unprecedented for planets) is 1,741 K. As models with non-zero albedo are cooler, this essentially eliminates uniform blackbody models, and may also require an albedo lower than any measured for a planet, very strong 8 µm emission, strong temporal variability, or a heat source other than stellar radiation. On the other hand, an instantaneous re-emission blackbody model, in which each patch of surface area instantly re-emits all received light, matches the data. This planet is known6,7,8,9 to be enriched in heavy elements, which may give rise to novel atmospheric properties yet to be investigated.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 701–716 (Univ. Arizona Press, Tucson, Arizona, 2007)

  2. 2.

    et al. Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523–529 (2005)

  3. 3.

    , , & Infrared radiation from an extrasolar planet. Nature 434, 740–743 (2005)

  4. 4.

    , , & Strong infrared emission from the extrasolar planet HD 189733b. Astrophys. J. 644, 560–564 (2006)

  5. 5.

    et al. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007).

  6. 6.

    et al. The N2K Consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. Astrophys. J. 633, 465–473 (2005)

  7. 7.

    , , , & Atmosphere, interior, and evolution of the metal-rich transiting planet HD 149026b. Astrophys. J. 642, 495–504 (2006)

  8. 8.

    , , , & On the origin of HD 149026b. Astrophys. J. 650, 1150–1159 (2006)

  9. 9.

    & The formation of HD 149026b. Mon. Not. R. Astron. Soc. 376, L62–L66 (2007)

  10. 10.

    et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. 154, 10–17 (2004)

  11. 11.

    et al. The Spitzer Space Telescope Mission. Astrophys. J. Suppl. 154, 1–9 (2004)

  12. 12.

    et al. On the dayside thermal emission of hot Jupiters. Astrophys. J. 632, 1122–1131 (2005)

  13. 13.

    et al. The phase-dependent infrared brightness of the extrasolar planet υ Andromedae b. Science 314, 623–626 (2006)

  14. 14.

    , , , & Modeling the formation of clouds in brown dwarf atmospheres. Astrophys. J. 586, 1320–1337 (2003); erratum. 595, 573 (2003)

  15. 15.

    The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy. Mon. Not. R. Astron. Soc. 364, 649–653 (2005)

  16. 16.

    , , & Possible solutions to the radius anomalies of transiting giant planets. Astrophys. J. (in the press); preprint at 〈〉 (2007)

  17. 17.

    & Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. Astrophys. J. 649, 1048–1063 (2006)

  18. 18.

    & The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005)

  19. 19.

    , , , & Resolving the surfaces of extrasolar planets with secondary eclipse light curves. Astrophys. J. 649, 1020–1027 (2006)

  20. 20.

    et al. Toward eclipse mapping of hot Jupiters. Astrophys. J. (in the press); preprint at 〈〉 (2007)

  21. 21.

    et al. The Transit Light Curve Project. I. Four consecutive transits of the exoplanet XO-1b. Astrophys. J. 652, 1715–1723 (2006)

  22. 22.

    et al. Transit photometry of the core-dominated planet HD 149026b. Astrophys. J. 636, 445–452 (2006)

  23. 23.

    et al. Tidal dissipation within hot Jupiters: a new appraisal. Astron. Astrophys. 462, L5–L8 (2007)

  24. 24.

    , , , & Hot Jupiter variability in eclipse depth. Astrophys. J. (in the press); preprint at 〈〉 (2007)

  25. 25.

    , , , & A spectrum of an extrasolar planet. Nature 445, 892–895 (2007)

  26. 26.

    et al. A Spitzer spectrum of the exoplanet HD 189733b. Astrophys. J. 658, L115–L118 (2007)

Download references

Acknowledgements

We thank Spitzer’s Director for discretionary time; G. Squires, and the Spitzer staff for rapid proposal handling and scheduling; B. Hansen, C. Lisse, T. Loredo, and W. T. Reach for discussions; and A. Wolf, J. Winn, G. Henry, M. Holman, H. Knutson and D. Charbonneau for discussions and for sharing results before publication. W. Bowman assisted in preparing Fig. 1. We thank C. Markwardt, the Free Software Foundation, W. Landsman, other contributors to the Interactive Data Language Astronomy Library, and the open-source community for software. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This material is based upon work supported by the US National Science Foundation and by the US National Aeronautics and Space Administration through an award issued by JPL/Caltech.

The original data are available from the Spitzer Space Telescope archive, program 254

Author information

Affiliations

  1. Department of Physics, University of Central Florida, Orlando, Florida 32816-2385, USA

    • Joseph Harrington
  2. Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853-6801, USA

    • Joseph Harrington
    •  & Statia Luszcz
  3. Department of Astronomy, University of California, Berkeley, California 94720-3411, USA

    • Statia Luszcz
  4. Departments of Earth, Atmospheric, and Planetary Sciences and of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • Sara Seager
  5. Planetary Systems Laboratory, Code 693

    • Drake Deming
  6. Exoplanet and Stellar Astrophysics Laboratory, Code 667, NASA’s Goddard Space Flight Center, Greenbelt, Maryland 20771-0001, USA

    • L. Jeremy Richardson

Authors

  1. Search for Joseph Harrington in:

  2. Search for Statia Luszcz in:

  3. Search for Sara Seager in:

  4. Search for Drake Deming in:

  5. Search for L. Jeremy Richardson in:

Competing interests

The original data are available from the Spitzer Space Telescope archive, program 254. Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Corresponding author

Correspondence to Joseph Harrington.

Supplementary information

PDF files

  1. 1.

    Supplementary Information 1

    This file contains Supplementary Methods, which inform the analysis used in the paper, including Supplementary Figures 1-7, Supplementary Table 1 and additional references.

Zip files

  1. 1.

    Supplementary 2

    This file contains the light curve and ancillary information analyzed in the article. It is in the standard ASCII Flexible Image Transport System (FITS) format used by astronomers. Its header describes the internal arrangement of data.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature05863

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.