Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator


Type 2 diabetes mellitus, a disease with significant effects on the health and economy of Western societies, involves disturbances in both lipid and carbohydrate metabolism1,2,3. In the insulin-resistant or diabetic state, the liver is unresponsive to the actions of insulin with regard to the suppression of glucose output but continues to produce large amounts of lipid, the latter mimicking the fed, insulin-replete condition4,5. The disordered distribution of lipids contributes to the cardiovascular disease that is the greatest cause of mortality of type 2 diabetes mellitus6,7. Yet the precise signal transduction pathways by which insulin regulates hepatic lipid synthesis and degradation remain largely unknown. Here we describe a mechanism by which insulin, through the intermediary protein kinase Akt2/protein kinase B (PKB)-β, elicits the phosphorylation and inhibition of the transcriptional coactivator peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α), a global regulator of hepatic metabolism during fasting. Phosphorylation prevents the recruitment of PGC-1α to the cognate promoters, impairing its ability to promote gluconeogenesis and fatty acid oxidation. These results define a mechanism by which insulin controls lipid catabolism in the liver and suggest a novel site for therapy in type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Akt phosphorylates PGC-1α at Ser 570.
Figure 2: Induction of gene expression, glucose production and β-oxidation by PGC-1α S570A is resistant to inhibition by Akt.
Figure 3: Akt inhibits hepatic gene expression and glucose production in vivo by the phosphorylation of PGC-1α at Ser 570.
Figure 4: Phosphorylation of PGC-1α at Ser 570 is required for Akt to inhibit recruitment of PGC-1α to chromatin.


  1. Bouche, C., Serdy, S., Kahn, C. R. & Goldfine, A. B. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr. Rev. 25, 807–830 (2004)

    Article  CAS  Google Scholar 

  2. McGarry, J. D. Banting Lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51, 7–18 (2002)

    Article  CAS  Google Scholar 

  3. Zimmet, P., Alberti, K. G. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001)

    Article  ADS  CAS  Google Scholar 

  4. Diraison, F., Moulin, P. & Beylot, M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 29, 478–485 (2003)

    Article  CAS  Google Scholar 

  5. Donnelly, K. L. et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343–1351 (2005)

    Article  CAS  Google Scholar 

  6. Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Eckel, R. H., Kahn, R., Robertson, R. M. & Rizza, R. A. Preventing cardiovascular disease and diabetes: a call to action from the American Diabetes Association and the American Heart Association. Circulation 113, 2943–2946 (2006)

    Article  Google Scholar 

  8. Lin, J., Handschin, C. & Spiegelman, B. M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 1, 361–370 (2005)

    Article  Google Scholar 

  9. Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature 423, 550–555 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Barthel, A., Schmoll, D. & Unterman, T. G. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16, 183–189 (2005)

    Article  CAS  Google Scholar 

  11. Liao, J., Barthel, A., Nakatani, K. & Roth, R. A. Activation of protein kinase B/Akt is sufficient to repress the glucocorticoid and cAMP induction of phosphoenolpyruvate carboxykinase gene. J. Biol. Chem. 273, 27320–27324 (1998)

    Article  CAS  Google Scholar 

  12. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science 292, 1728–1731 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Kohn, A. D., Summers, S. A., Birnbaum, M. J. & Roth, R. A. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31372–31378 (1996)

    Article  CAS  Google Scholar 

  14. Ueki, K. et al. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J. Biol. Chem. 273, 5315–5322 (1998)

    Article  CAS  Google Scholar 

  15. Brazil, D. P., Yang, Z. Z. & Hemmings, B. A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29, 233–242 (2004)

    Article  CAS  Google Scholar 

  16. Barthel, A. & Schmoll, D. Novel concepts in insulin regulation of hepatic gluconeogenesis. Am. J. Physiol. Endocrinol. Metab. 285, E685–E692 (2003)

    Article  CAS  Google Scholar 

  17. Nakae, J., Kitamura, T., Silver, D. L. & Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Invest. 108, 1359–1367 (2001)

    Article  CAS  Google Scholar 

  18. Kanaya, E., Shiraki, T. & Jingami, H. The nuclear bile acid receptor FXR is activated by PGC-1α in a ligand-dependent manner. Biochem. J. 382, 913–921 (2004)

    Article  CAS  Google Scholar 

  19. Schreiber, S. N., Knutti, D., Brogli, K., Uhlmann, T. & Kralli, A. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor α (ERRα). J. Biol. Chem. 278, 9013–9018 (2003)

    Article  CAS  Google Scholar 

  20. Huss, J. M., Kopp, R. P. & Kelly, D. P. Peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-α and -γ. Identification of novel leucine-rich interaction motif within PGC-1α. J. Biol. Chem. 277, 40265–40274 (2002)

    Article  CAS  Google Scholar 

  21. Pilegaard, H., Saltin, B. & Neufer, P. D. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. (Lond.) 546, 851–858 (2003)

    Article  CAS  Google Scholar 

  22. Puigserver, P. & Spiegelman, B. M. Peroxisome proliferator-activated receptor-γ coactivator 1 α (PGC-1 α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78–90 (2003)

    Article  CAS  Google Scholar 

  23. Yoon, J. C. et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138 (2001)

    Article  ADS  CAS  Google Scholar 

  24. Obata, T. et al. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J. Biol. Chem. 275, 36108–36115 (2000)

    Article  CAS  Google Scholar 

  25. Ono, H. et al. Hepatic Akt activation induces marked hypoglycemia, hepatomegaly, and hypertriglyceridemia with sterol regulatory element binding protein involvement. Diabetes 52, 2905–2913 (2003)

    Article  CAS  Google Scholar 

  26. Schilling, M. M., Oeser, J. K., Boustead, J. N., Flemming, B. P. & O'Brien, R. M. Gluconeogenesis: re-evaluating the FOXO1–PGC-1α connection. Nature 443, E10–E11 (2006)

    Article  ADS  CAS  Google Scholar 

  27. Li, X., Yost, H. J., Virshup, D. M. & Seeling, J. M. Protein phosphatase 2A and its B56 regulatory subunit inhibit Wnt signaling in Xenopus. EMBO J. 20, 4122–4131 (2001)

    Article  CAS  Google Scholar 

  28. Finck, B. N. et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metab. 4, 199–210 (2006)

    Article  CAS  Google Scholar 

  29. Wolfrum, C., Besser, D., Luca, E. & Stoffel, M. Insulin regulates the activity of forkhead transcription factor Hnf-3β/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc. Natl Acad. Sci. USA 100, 11624–11629 (2003)

    Article  ADS  CAS  Google Scholar 

Download references


We thank Q. Chu for her help with the animal experiments, and P. Puigserver, M. Accili and B. Finck for providing reagents and advice. This work was supported by NIH grants to M.J.B. and X.L.

Author Contributions X.L. performed all the experiments, which were designed by X.L. and M.J.B. B.M. assisted in experiments with animals, and Q.G. generated the phospho-specific antiserum. The paper was written by X.L. and M.J.B.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Morris J. Birnbaum.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S4 with Legends and Supplementary Table S1. (PDF 761 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, X., Monks, B., Ge, Q. et al. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature 447, 1012–1016 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing