Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lateral habenula as a source of negative reward signals in dopamine neurons


Midbrain dopamine neurons are key components of the brain’s reward system1, which is thought to guide reward-seeking behaviours2,3,4. Although recent studies have shown how dopamine neurons respond to rewards and sensory stimuli predicting reward1,5,6, it is unclear which parts of the brain provide dopamine neurons with signals necessary for these actions. Here we show that the primate lateral habenula, part of the structure called the epithalamus, is a major candidate for a source of negative reward-related signals in dopamine neurons. We recorded the activity of habenula neurons and dopamine neurons while rhesus monkeys were performing a visually guided saccade task with positionally biased reward outcomes7. Many habenula neurons were excited by a no-reward-predicting target and inhibited by a reward-predicting target. In contrast, dopamine neurons were excited and inhibited by reward-predicting and no-reward-predicting targets, respectively. Each time the rewarded and unrewarded positions were reversed, both habenula and dopamine neurons reversed their responses as the bias in saccade latency reversed. In unrewarded trials, the excitation of habenula neurons started earlier than the inhibition of dopamine neurons. Furthermore, weak electrical stimulation of the lateral habenula elicited strong inhibitions in dopamine neurons. These results suggest that the inhibitory input from the lateral habenula plays an important role in determining the reward-related activity of dopamine neurons.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Behavioural task and monkey’s performance.
Figure 2: Activity of habenula neurons during the reward-biased visual saccade task.
Figure 3: Reward modulation of lateral habenula neurons and dopamine neurons.
Figure 4: Effects of electrical stimulation of the lateral habenula on dopamine neurons.


  1. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998)

    CAS  Article  Google Scholar 

  2. Houk, J. C., Adams, J. L. & Barto, A. in Models of Information Processing in the Basal Ganglia (eds Houk, J. C., Davis, J. L. & Beiser, D. G.) 249–270 (MIT Press, Cambridge, Massachusetts, 1995)

    Google Scholar 

  3. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997)

    CAS  Article  Google Scholar 

  4. Montague, P. R., Dayan, P. & Sejnowski, T. J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996)

    CAS  Article  Google Scholar 

  5. Satoh, T., Nakai, S., Sato, T. & Kimura, M. Correlated coding of motivation and outcome of decision by dopamine neurons. J. Neurosci. 23, 9913–9923 (2003)

    CAS  Article  Google Scholar 

  6. Takikawa, Y., Kawagoe, R. & Hikosaka, O. A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping. J. Neurophysiol. 92, 2520–2529 (2004)

    Article  Google Scholar 

  7. Lauwereyns, J., Watanabe, K., Coe, B. & Hikosaka, O. A neural correlate of response bias in monkey caudate nucleus. Nature 418, 413–417 (2002)

    ADS  CAS  Article  Google Scholar 

  8. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–280 (2004)

    CAS  Article  Google Scholar 

  9. Herkenham, M. & Nauta, W. J. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187, 19–47 (1979)

    CAS  Article  Google Scholar 

  10. Christoph, G. R., Leonzio, R. J. & Wilcox, K. S. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J. Neurosci. 6, 613–619 (1986)

    CAS  Article  Google Scholar 

  11. Murphy, C. A., DiCamillo, A. M., Haun, F. & Murray, M. Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: A comparison of the effects of neonatal and adult lesions. Behav. Brain Res. 81, 43–52 (1996)

    CAS  Article  Google Scholar 

  12. Amat, J. et al. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res. 917, 118–126 (2001)

    CAS  Article  Google Scholar 

  13. Caldecott-Hazard, S., Mazziotta, J. & Phelps, M. Cerebral correlates of depressed behavior in rats, visualized using 14C–2-deoxyglucose autoradiography. J. Neurosci. 8, 1951–1961 (1988)

    CAS  Article  Google Scholar 

  14. Gao, D. M., Hoffman, D. & Benabid, A. L. Simultaneous recording of spontaneous activities and nociceptive responses from neurons in the pars compacta of substantia nigra and in the lateral habenula. Eur. J. Neurosci. 8, 1474–1478 (1996)

    CAS  Article  Google Scholar 

  15. Thornton, E. W. & Bradbury, G. E. Effort and stress influence the effect of lesion of the habenula complex in one-way active avoidance learning. Physiol. Behav. 45, 929–935 (1989)

    CAS  Article  Google Scholar 

  16. Sutherland, R. J. The dorsal diencephalic conduction system: A review of the anatomy and functions of the habenular complex. Neurosci. Biobehav. Rev. 6, 1–13 (1982)

    CAS  Article  Google Scholar 

  17. Lecourtier, L. & Kelly, P. H. Bilateral lesions of the habenula induce attentional disturbances in rats. Neuropsychopharmacology 30, 484–496 (2005)

    Article  Google Scholar 

  18. Ullsperger, M. & von Cramon, D. Y. Error monitoring using external feedback: Specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J. Neurosci. 23, 4308–4314 (2003)

    CAS  Article  Google Scholar 

  19. Shepard, P. D., Holcomb, H. H. & Gold, J. M. Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. Schizophr. Bull. 32, 417–421 (2006)

    Article  Google Scholar 

  20. Ellison, G. Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain Res. Brain Res. Rev. 19, 223–239 (1994)

    CAS  Article  Google Scholar 

  21. Sandyk, R. Relevance of the habenular complex to neuropsychiatry: A review and hypothesis. Int. J. Neurosci. 61, 189–219 (1991)

    CAS  Article  Google Scholar 

  22. Kawagoe, R., Takikawa, Y. & Hikosaka, O. Reward-predicting activity of dopamine and caudate neurons—a possible mechanism of motivational control of saccadic eye movement. J. Neurophysiol. 91, 1013–1024 (2004)

    CAS  Article  Google Scholar 

  23. Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006)

    Article  Google Scholar 

  24. Nakamura, K. & Hikosaka, O. Role of dopamine in the primate caudate nucleus in reward modulation of saccades. J. Neurosci. 26, 5360–5369 (2006)

    CAS  Article  Google Scholar 

  25. Daw, N. D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw. 15, 603–616 (2002)

    Article  Google Scholar 

  26. Seymour, B. et al. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nature Neurosci. 8, 1234–1240 (2005)

    CAS  Article  Google Scholar 

  27. Solomon, R. L. & Corbit, J. D. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol. Rev. 81, 119–145 (1974)

    CAS  Article  Google Scholar 

  28. Ungless, M. A., Magill, P. J. & Bolam, J. P. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303, 2040–2042 (2004)

    ADS  CAS  Article  Google Scholar 

  29. Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002)

    CAS  Article  Google Scholar 

  30. Parent, A., Gravel, S. & Boucher, R. The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res. Bull. 6, 23–38 (1981)

    CAS  Article  Google Scholar 

  31. Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006)

    ADS  CAS  Article  Google Scholar 

Download references


We thank R. H. Wurtz, B. J. Richmond, K. Nakamura, L. Ding, M. Isoda, S. Hong and E. Bromberg-Martin for discussions, M. K. Smith for histological expertise, and J. W. McClurkin, A. M. Nichols, T. W. Ruffner, A. V. Hays and L. P. Jensen for technical assistance. This research was supported by the Intramural Research Program at the National Institutes of Health, National Eye Institute.

Author Contributions M.M. performed the experiments and analysed the data. M.M. and O.H. discussed the results and wrote the manuscript. O.H. organized this project.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Okihide Hikosaka.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Notes and Supplementary Figures S1-S7 with Legends (PDF 1733 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Matsumoto, M., Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing