Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin-based logic in semiconductors for reconfigurable large-scale circuits

Abstract

Research in semiconductor spintronics aims to extend the scope of conventional electronics by using the spin degree of freedom of an electron in addition to its charge1. Significant scientific advances in this area have been reported, such as the development of diluted ferromagnetic semiconductors2,3, spin injection into semiconductors from ferromagnetic metals4,5,6,7,8 and discoveries of new physical phenomena involving electron spin9,10. Yet no viable means of developing spintronics in semiconductors has been presented. Here we report a theoretical design that is a conceptual step forward—spin accumulation is used as the basis of a semiconductor computer circuit. Although the giant magnetoresistance effect in metals11,12 has already been commercially exploited, it does not extend to semiconductor/ferromagnet systems, because the effect is too weak for logic operations. We overcome this obstacle by using spin accumulation rather than spin flow13,14,15. The basic element in our design is a logic gate that consists of a semiconductor structure with multiple magnetic contacts; this serves to perform fast and reprogrammable logic operations in a noisy, room-temperature environment. We then introduce a method to interconnect a large number of these gates to form a ‘spin computer’. As the shrinking of conventional complementary metal-oxide–semiconductor (CMOS) transistors reaches its intrinsic limit, greater computational capability will mean an increase in both circuit area and power dissipation. Our spin-based approach may provide wide margins for further scaling and also greater computational capability per gate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of the reprogrammable magnetologic gate.
Figure 2: Modelled electrical behaviour of a magnetologic gate set for NAND(X,Y).
Figure 3: Proposed logic cascading scheme.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: A spin based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  ADS  CAS  Google Scholar 

  2. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Zhu, H. J. et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Hanbicki, A. T. et al. Analysis of the transport process providing spin injection through a Fe/AlGaAs Schottky barrier. Appl. Phys. Lett. 82, 4092–4094 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005)

    Article  ADS  CAS  Google Scholar 

  8. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005)

    Article  ADS  CAS  Google Scholar 

  11. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  CAS  Google Scholar 

  12. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, R4828–R4830 (1989)

    Article  ADS  Google Scholar 

  13. Johnson, M. Bipolar spin switch. Science 260, 320–323 (1993)

    Article  ADS  CAS  Google Scholar 

  14. Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Stephens, J. et al. Spin accumulation in forward-bias MnAs/GaAs Schottky diodes. Phys. Rev. Lett. 93, 097602 (2004)

    Article  ADS  CAS  Google Scholar 

  16. Johnson, M. in Magnetoelectronics (ed. Johnson, M.) 273–330 (Elsevier, San Diego, 2004)

    Book  Google Scholar 

  17. Cowburn, R. P. & Welland, M. E. Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Hanbicki, A. T. et al. Nonvolatile reprogrammable logic elements using hybrid resonant tunneling diode–giant magnetoresistance circuits. Appl. Phys. Lett. 79, 1190–1192 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Richter, R., Bär, L., Wecker, J. & Reiss, G. Non-volatile field programmable spin-logic for reconfigurable computing. Appl. Phys. Lett. 80, 1291–1293 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Ney, A., Pampuch, C., Koch, R. & Ploog, K. H. Programmable computing with a single magnetoresistive element. Nature 425, 485–487 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Datta, S. & Das, B. Electronic analogue of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Article  ADS  CAS  Google Scholar 

  23. Kikkawa, J. M. & Awschalom, D. D. Resonant spin amplification in n-type GaAs. Phys. Rev. Lett. 80, 4313–4316 (1998)

    Article  ADS  CAS  Google Scholar 

  24. Tehrani, S. et al. Recent developments in magnetic tunnel junction MRAM. IEEE Trans. Magn. 36, 2752–2757 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Gerrits, van den Berg, H. A. M., Hohlfeld, J., Bär, L. & Rasing Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002)

    Article  ADS  CAS  Google Scholar 

  26. Dery, H., Cywiński, Ł. & Sham, L. J. Spin transference and magnetoresistance amplification in a transistor. Phys. Rev. B 73, 161307(R) (2006)

    Article  ADS  Google Scholar 

  27. Hauck, S. The roles of FPGAs in reprogrammable systems. Proc. IEEE 86, 615–639 (1998)

    Article  Google Scholar 

  28. Skumryev, V. et al. Beating the superparamagnetic limit with exchange. Nature 423, 850–853 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Dery, H. & Sham, L. J. Spin extraction theory and its relevance to spintronics. Phys. Rev. Lett. 98, 046602 (2007)

    Article  ADS  CAS  Google Scholar 

  30. Pikus, G. E. & Titkov, A. N. in Optical Orientation Vol. 8 (eds Meier, F. & Zakharchenya, B. P.) 73–131 (North-Holland, New York, 1984)

    Book  Google Scholar 

Download references

Acknowledgements

We thank B. Dalal for suggestions regarding the logic cascading scheme. This work was supported by the National Science Foundation.

Author Contributions H.D. and L.J.S. developed the proposed idea of spin computation. P.D. designed the cascading scheme. Ł.C. formulated the time-dependent spin-diffusion transport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dery.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The first section ‘Magnetologic gates for high speed electronics’ contains the discussion of the ways in which the signal-to-noise can be improved, and it discusses the different capacitive parasitic effects present in the system. The second section ‘Thyristor latch’ contains a description of the thyristor latch which we use to convert the transient current into a voltage. The third section ‘Power budgeting’ contains the calculation of the power dissipated by a system of ~106 magnetologic gates. The fourth section ‘Magnetization errant dynamics: data retention, write fault and half selection’ qualitatively explains how the possible sources of errors in magnetic random access memories (due to magnetization switching) are eliminated in our spin-logic design. The fifth section contains Supplementary Methods with a detailed account of the time-dependent lateral diffusion equations which we have used in our calculations (figure 2 of the main text). (PDF 560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dery, H., Dalal, P., Cywiński, Ł. et al. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007). https://doi.org/10.1038/nature05833

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05833

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing