Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Annealing-induced interfacial toughening using a molecular nanolayer

Abstract

Self-assembled molecular nanolayers (MNLs) composed of short organic chains and terminated with desired functional groups are attractive for modifying surface properties for a variety of applications. For example, organosilane MNLs are used as lubricants1, in nanolithography2, for corrosion protection3 and in the crystallization of biominerals4. Recent work has explored uses of MNLs at thin-film interfaces, both as active components in molecular devices5, and as passive layers, inhibiting interfacial diffusion6,7,8, promoting adhesion9,10 and toughening brittle nanoporous structures11. The relatively low stability of MNLs on surfaces at temperatures above 350–400 °C (refs 12, 13), as a result of desorption14 or degradation, limits the use of surface MNLs in high-temperature applications. Here we harness MNLs at thin-film interfaces at temperatures higher than the MNL desorption temperature to fortify copper–dielectric interfaces relevant to wiring in micro- and nano-electronic devices. Annealing Cu/MNL/SiO2 structures at 400–700 °C results in interfaces that are five times tougher than pristine Cu/SiO2 structures, yielding values exceeding 20 J m-2. Previously, similarly high toughness values have only been obtained using micrometre-thick interfacial layers15,16,17. Electron spectroscopy of fracture surfaces and density functional theory modelling of molecular stretching and fracture show that toughening arises from thermally activated interfacial siloxane bridging that enables the MNL to be strongly linked to both the adjacent layers at the interface, and suppresses MNL desorption. We anticipate that our findings will open up opportunities for molecular-level tailoring of a variety of interfacial properties, at processing temperatures higher than previously envisaged, for applications where microlayers are not a viable option—such as in nanodevices or in thermally resistant molecular-inorganic hybrid devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of thermal annealing on the interface toughness of Cu/MPTMS/SiO 2 and Cu/SiO 2 structures.
Figure 2: Core-level spectra from fracture surfaces.
Figure 3: High-resolution core-level spectra from fracture surfaces, and a schematic illustration of the primary toughening mechanism.
Figure 4: Calculated system energy as a function of molecular stretching for different combinations of siloxane and hydrogen bonds at the MPTMS/SiO 2 interface.

Similar content being viewed by others

References

  1. Qian, L., Tian, F. & Xiao, X. Tribological properties of self-assembled monolayers and their substrates under various humid environments. Tribol. Lett. 15, 169– 176 (2003)

    Article  CAS  Google Scholar 

  2. Yang, X. M., Peters, R. D., Kim, T. K. & Nealey, P. F. Proximity X-ray lithography using self-assembled alkylsiloxane films: Resolution and pattern transfer. Langmuir 17, 228– 233 (2001)

    Article  CAS  Google Scholar 

  3. Dressick, W. J. & Calvert, J. M. Patterning of self-assembled films using lithographic exposure tools. Jpn. J. Appl. Phys. 32, 5829– 5839 (1993)

    Article  ADS  CAS  Google Scholar 

  4. Kuther, J. & Tremel, W. Template induced crystallization of biominerals on self-assembled monolayers of alkylthiols. Thin Solid Films 327–329, 554– 558 (1998)

    Article  ADS  Google Scholar 

  5. Halik, M. et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431, 963– 966 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Krishnamoorthy, A., Chanda, K., Murarka, S. P., Ramanath, G. & Ryan, J. G. Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization. Appl. Phys. Lett. 78, 2467– 2469 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Ganesan, P. G., Gamba, J., Ellis, A., Kane, R. S. & Ramanath, G. Polyelectrolyte nanolayers as diffusion barriers for Cu metallization. Appl. Phys. Lett. 83, 3302– 3305 (2003)

    Article  ADS  CAS  Google Scholar 

  8. Ganesan, P. G., Singh, A. P. & Ramanath, G. Diffusion barrier properties of carboxyl- and amine-terminated molecular nanolayers. Appl. Phys. Lett. 85, 579– 581 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Ferguson, G. S., Chaudhury, M. K., Sigal, G. B. & Whitesides, G. M. Contact adhesion of thin gold films on elastomeric supports: Cold welding under ambient conditions. Science 253, 776– 778 (1991)

    Article  ADS  CAS  Google Scholar 

  10. Ramanath, G. et al. Self-assembled subnanolayers as interfacial adhesion enhancers and diffusion barriers for integrated circuits. Appl. Phys. Lett. 83, 383– 385 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Maidenberg, D. A., Volksen, W., Miller, R. D. & Dauskardt, R. H. Toughening of nanoporous glasses using porogen residuals. Nature Mater. 3, 464– 469 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Neves, B. R. A., Salmon, M. E., Russell, P. E. & Troughton, E. B. J. Thermal stability study of self-assembled monolayers on mica. Langmuir 16, 2409– 2412 (2000)

    Article  CAS  Google Scholar 

  13. Ishida, T. et al. Annealing effect of self-assembled monolayers generated from terphenyl derivatized thiols on Au(111). Langmuir 18, 83– 92 (2002)

    Article  CAS  Google Scholar 

  14. Senkevich, J. J., Yang, G. R. & Lu, T. M. Thermal stability of mercaptan terminated self-assembled multilayer films on SiO2 surface. Colloids Surf. A 207, 139– 145 (2002)

    Article  CAS  Google Scholar 

  15. Gandikota, S. et al. Adhesion studies of CVD copper metallization. Microelectron. Eng. 50, 547– 553 (2000)

    Article  CAS  Google Scholar 

  16. Litteken, C. S. & Dauskardt, R. H. Adhesion of polymer thin-films and patterned lines. Int. J. Fract. 120, 475– 485 (2003)

    Article  Google Scholar 

  17. Snodgrass, J. M., Pantelidis, D., Jenkins, M. L., Bravman, J. C. & Dauskardt, R. H. Subcritical debonding of polymer/silica interfaces under monotonic and cyclic loading. Acta Mater. 50, 2395– 2411 (2002)

    Article  CAS  Google Scholar 

  18. Dauskardt, R. H., Lane, M., Ma, Q. & Krishna, N. Adhesion and debonding of multi-layer thin film structures. Eng. Fract. Mech. 61, 141– 162 (1998)

    Article  Google Scholar 

  19. Lane, M., Dauskardt, R. H., Krishna, N. & Hashim, I. Adhesion and reliability of copper interconnects with Ta and TaN barrier layers. J. Mater. Res. 15, 203– 211 (2000)

    Article  ADS  CAS  Google Scholar 

  20. Evans, A. G., Rühle, M., Dalgleish, B. J. & Charalambides, P. G. The fracture energy of biomaterial interfaces. Metall. Trans. A 21, 2419– 2429 (1990)

    Article  Google Scholar 

  21. Lane, M. Interface fracture. Annu. Rev. Mater. Res. 33, 29– 54 (2003)

    Article  ADS  CAS  Google Scholar 

  22. Hu, M. et al. Effect of interfacial interactions on the initial growth of Cu on clean SiO2 and 3-mercaptopropyltrimethoxysilane-modified SiO2 substrates. J. Vac. Sci. Technol. A 20, 589– 596 (2002)

    Article  ADS  CAS  Google Scholar 

  23. Teo, M., Kim, J., Wong, P. C., Wong, K. C. & Mitchell, K. A. R. Investigations of interfaces formed between bis-1,2-(triethoxysilyl)ethane (BTSE) and aluminum after different Forest Product Laboratory pre-treatment times. Appl. Surf. Sci. 221, 340– 348 (2004)

    Article  ADS  CAS  Google Scholar 

  24. D’souza, A. S. & Pantano, C. G. Hydroxylation and dehydroxylation behavior of silica glass fracture surfaces. J. Am. Ceram. Soc. 85, 1499– 1504 (2002)

    Article  Google Scholar 

  25. Ulman, A. An Introduction to Ultrathin Organic Films, from Langmuir-Blodgett to Self-Assembly 1st edn (Academic, San Diego, 1991)

    Google Scholar 

  26. Lane, M., Dauskardt, R. H., Vainchtein, A. & Gao, H. Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15, 2758– 2769 (2000)

    Article  ADS  CAS  Google Scholar 

  27. Guyer, E. P. & Dauskardt, R. H. Fracture of nanoporous thin-film glasses. Nature Mater. 3, 53– 57 (2004)

    Article  ADS  CAS  Google Scholar 

  28. Wu, X., Vargas, M. C., Nayak, S., Lotrich, V. & Scoles, G. Towards extending the applicability of density functional theory to weakly bound systems. J. Chem. Phys. 115, 8748– 8757 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation, the US-Israel Binational Science Foundation, an Alexander von Humboldt fellowship, and New York state through the Interconnect Focus Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganapathiraman Ramanath.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S4 with Legends and additional references. (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandhi, D., Lane, M., Zhou, Y. et al. Annealing-induced interfacial toughening using a molecular nanolayer. Nature 447, 299–302 (2007). https://doi.org/10.1038/nature05826

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05826

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing