Superconductivity in lithium below 0.4 millikelvin at ambient pressure

Abstract

Elements in the alkali metal series are regarded as unlikely superconductors because of their monovalent character1,2. A superconducting transition temperature as high as 20 K, recently found in compressed lithium3,4,5,6 (the lightest alkali element), probably arises from pressure-induced changes in the conduction-electron band structure6,7,8,9,10,11,12. Superconductivity at ambient pressure in lithium has hitherto remained unresolved, both theoretically and experimentally11,12,13,14,15,16. Here we demonstrate that lithium is a superconductor at ambient pressure with a transition temperature of 0.4 mK. As lithium has a particularly simple conduction electron system, it represents an important case for any attempts to classify superconductors and transition temperatures, especially to determine if any non-magnetic configuration can exclude superconductivity down to zero temperature. Furthermore, the combination of extremely weak superconductivity and relatively strong nuclear magnetism in lithium would clearly lead to mutual competition between these two ordering phenomena under suitably prepared conditions17,18.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Diagrams of a lithium sample pair, magnetic shields and the measuring coil system.
Figure 2: Observation of the Meissner state, indicating superconductivity in lithium.
Figure 3: Phase diagram for another pair of lithium samples.

References

  1. 1

    Matthias, B. T. Superconductivity in the periodic system. Prog. Low Temp. Phys. 2, 138–150 (1957)

    CAS  Article  Google Scholar 

  2. 2

    Buzea, C. & Robbie, K. Assembling the puzzle of superconducting elements: A review. Supercond. Sci. Technol. 18, R1–R8 (2005)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20 K. Nature 419, 597–599 (2002)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Struzhkin, V. V., Eremets, M. I., Gan, W., Mao, H. K. & Hemley, R. J. Superconductivity in dense lithium. Science 298, 1213–1215 (2002)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Deemyad, S. & Schilling, J. S. Superconducting phase diagram of Li metal in nearly hydrostatic pressures up to 67 GPa. Phys. Rev. Lett. 91, 167001 (2003)

    ADS  Article  Google Scholar 

  6. 6

    Schilling, J. S. Superconductivity in the alkali metals. High Press. Res. 26, 145–163 (2006)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141–144 (1999)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174–178 (2000)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Ackland, G. J. & Macleod, I. R. Origin of the complex crystal structures of elements at intermediate pressure. N. J. Phys. 6, 138 (2004)

    Article  Google Scholar 

  10. 10

    Rodriguez-Prieto, A., Bergara, A., Silkin, V. M. & Echenique, P. M. Complexity and Fermi surface deformation in compressed lithium. Phys. Rev. B 74, 172104 (2006)

    ADS  Article  Google Scholar 

  11. 11

    Jansen, L. On the occurrence of superconductivity in compressed alkali metals. An indirect-exchange interpretation. Physica A 332, 249–262 (2004)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Profeta, G. et al. Superconductivity in lithium, potassium, and aluminum under extreme pressure: A first-principles study. Phys. Rev. Lett. 96, 047003 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Liu, A. Y. & Cohen, M. L. Electron-phonon coupling in BCC and 9R lithium. Phys. Rev. B 44, 9678–9684 (1991)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Richardson, C. F. & Ashcroft, N. W. Effective electron-electron interactions and the theory of superconductivity. Phys. Rev. B 55, 15130–15145 (1997)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Thorp, T. L. et al. Search for superconductivity in lithium and magnesium. J. Low Temp. Phys. 3, 589–602 (1970)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Lang, K. M. et al. Search for superconductivity in lithium. J. Low Temp. Phys. 114, 445–454 (1999)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Juntunen, K. I. & Tuoriniemi, J. T. Nuclear ordering in lithium and an upper limit on its ambient pressure superconducting transition temperature. Phys. Rev. Lett. 93, 157201 (2004)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Juntunen, K. I. & Tuoriniemi, J. T. Experiment on nuclear ordering and superconductivity in lithium. J. Low Temp. Phys. 141, 235–293 (2005)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Yao, W. et al. A versatile nuclear demagnetization cryostat for ultralow temperature research. J. Low Temp. Phys. 120, 121–150 (2000)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Tuoriniemi, J., Juntunen, K. & Uusvuori, J. Thermal contact to lithium metal. Physica B 329, 1294–1295 (2003)

    ADS  Article  Google Scholar 

  21. 21

    Overhauser, A. W. Crystal structure of lithium at 4.2 K. Phys. Rev. Lett. 53, 64–65 (1984)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Schwarz, W. & Blaschko, O. Polytype structures of lithium at low temperatures. Phys. Rev. Lett. 65, 3144–3147 (1990)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Liu, A. Y., Quong, A. A., Freericks, J. K., Nicol, E. J. & Jones, E. C. Structural phase stability and electron-phonon coupling in lithium. Phys. Rev. B 59, 4028–4035 (1999)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Buchal, Ch., Pobell, F., Mueller, R. M., Kubota, M. & Owers-Bradley, J. R. Superconductivity of rhodium at ultralow temperatures. Phys. Rev. Lett. 50, 64–67 (1983)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Knuuttila, T. A. et al. Polarized nuclei in normal and superconducting rhodium. J. Low Temp. Phys. 123, 65–102 (2001)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Buchal, Ch., Mueller, R. M., Pobell, F., Kubota, M. & Folle, H. R. Superconductivity investigations of Au-In alloys and of Au at ultralow temperatures. Solid State Commun. 42, 43–47 (1982)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Laboratory of Inorganic and Analytical Chemistry at TKK for use of the argon glove box. Financial support by the Academy of Finland and the European Commission is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juha Tuoriniemi.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tuoriniemi, J., Juntunen-Nurmilaukas, K., Uusvuori, J. et al. Superconductivity in lithium below 0.4 millikelvin at ambient pressure. Nature 447, 187–189 (2007). https://doi.org/10.1038/nature05820

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing