
A remarkable feature of the human immunodeficiency virus (HIV) is the 
dense carbohydrate (glycan) array that surrounds the exposed envelope 
antigens. However, the HIV genome encodes no gene products capable of 
synthesizing carbohydrates: its surface antigens are glycosylated entirely 
by host cellular enzymes. This extensive glycosylation is known to affect 
almost every aspect of virus biology. The folding of viral glycoproteins, 
the transmission of the virus and the nature of the immune response to 
infection are all profoundly affected by this glycosylation.

The coating of HIV with immunologically ‘self ’ glycans (that is, those 
synthesized by the host cell) has a predictable effect on viral immuno-
genicity: antibodies against most of the available antigenic surface of 
HIV do not normally occur. Here we review the apparently contradic-
tory roles of HIV glycans as both powerful adaptations for virus sur-
vival and targets for therapeutic intervention. Our understanding of the 
extraordinary extent to which HIV relies on the human glycosylation 
pathway has exposed new vulnerabilities that are now the target of both 
drug and vaccine design.

Structure and selection of viral carbohydrates
Synthesis and structure of gp120/gp41 carbohydrates
The types of glycan found on HIV are determined by the interactions 
between the three-dimensional structure of the envelope proteins and the 
biosynthetic environment of the cell that the virus has infected1. However, 
the locations of N-linked attachment sites2 (Asn-X-Ser/Thr-X, where X is 
not proline) and O-linked attachment sites3 are directly encoded by the 
viral genome. Importantly, the positioning of N-linked glycans is well 
conserved between both isolates and clades, particularly when compared 
with the high degree of variability within the viral envelope4,5. 

The envelope gene is translated as gp160 and later cleaved by furin 
proteases into gp120 and gp41. The nascent gp160 is transported by 
Sec61 to the endoplasmic reticulum, where N-linked glycan precur-
sors (Glc3Man9GlcNAc2) are transferred co-translationally to the amide 
groups of asparagine residues. The first and second glucose residues 
of Glc3Man9GlcNAc2 glycans are removed by glucosidases I and II. 
Monoglucosylated gp160 is a substrate for the chaperones calnexin 
and calreticulin. While bound to calnexin/calreticulin, gp160 (re)folds 
through interactions with other endoplasmic reticulum chaperones 
and disulphide isomerases such as ERp-57. The hydrolysis of the final 
glucose–mannose (Glcα1-2Man) bond by glucosidase II frees gp160 
from calnexin/calreticulin and allows it to exit from the endoplasmic 
reticulum. Misfolded glycoproteins are reglucosylated by the ‘folding 
sensor’ UDP-glucose glucosyltransferase and can rebind to calnexin/

calreticulin for further refolding cycles. After release from calnexin/cal-
reticulin, the oligomannose-bearing glycoprotein exits from the endo-
plasmic reticulum and moves into the Golgi, where further mannosidase 
trimming to Man5GlcNAc2 initiates the synthesis of complex-type gly-
cans (Fig. 1). However, buried glycans are protected from the processing 
that normally occurs in the endoplasmic reticulum/Golgi, meaning that 
they remain as ‘immature’ precursor glycans6,7. In the case of gp160, the 
steric occlusion of closely spaced N-linked carbohydrates means that less 
than 50% of the envelope glycans exiting from the Golgi are properly 
processed8,9. A full discussion of N-linked glycosylation is beyond the 
scope of this review; however, the conserved functional roles of N-linked 
glycans in the endoplasmic reticulum10 and the diversification of these 
structures in the Golgi11 have been well reviewed elsewhere. 

Most of the viral envelope surface is covered by carbohydrates 
(Fig. 2a). Structural knowledge of HIV gp120 has revealed that within 
this glycan shield oligomannose glycans are predominantly found in 
a cluster away from the receptor-binding sites and trimer interface8 
(Fig. 2b, c). This distribution fits well with the ‘antigenic map’ of gp120 
(refs 8, 12–14), which divides the glycoprotein into three regions: the 
neutralizing face, the non-neutralizing face and the heavily glycosylated 
silent face (Fig. 3a). Interestingly, sites with oligomannose glycans are 
more strongly conserved than those with complex-type carbohydrates4 
and are located predominantly on the silent face. A potential explanation 
for the conservation of the oligomannose glycoforms is the interaction 
of gp120 with host mannose-specific lectins15 (as discussed below). 

An unusual feature of gp120 is the degree to which sugar–sugar 
interactions are formed between neighbouring glycans16,17. For most 
glycoproteins, N-linked carbohydrates exhibit considerable conforma-
tional freedom beyond that of the protein18. However, the glycans of HIV 
are constrained within tight clusters16,17. Unusually extensive electron 
density is visible for many of the carbohydrates present in the crystal 
structure of gp120SIV , from the closely related simian immunodeficiency 
virus, indicating a rigid carbohydrate field stabilized by a sugar–sugar 
hydrogen-bond network16,17. Although not unique to HIV (for example, 
ordered oligomannose glycans have also been observed on the envelope 
glycoprotein of the Epstein–Barr virus19), this atypical clustering has 
direct functional, immunological and therapeutic consequences.

Biological roles of HIV glycans
Although HIV is generally specific for CD4+ cells, the type of second-
ary co-receptor that is bound by gp120 defines the exact tropism of the 
virus. HIV specific for the chemokine co-receptor CCR5 (R5 viruses) is 
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found during early infection in most individuals, and primarily infects 
circulating, activated and memory CCR5+ T lymphocytes and macro-
phages. CXCR4-specific HIV (X4 viruses) infect a wider range of CD4+ 
cells, including naive T cells20. There is a direct link between glycosyla-
tion and viral tropism: a change in tropism from CCR5 to CXCR4 is 
closely connected with changes in N-linked glycosylation within the 
extended variable loops (V1/V2 and V3) of gp120 (refs 20, 21). How-
ever, beyond the positioning of glycans, it has also been established that 
many of the specific carbohydrate motifs found on HIV gp120 have 
immunological properties. For example, α2-6-linked sialic acids, which 
are characteristic of glycoproteins from CD4+ T cells, are known ligands 
for CD22, an immunosuppressive lectin found on B cells22. Bisecting 
N-acetylglucosamine residues, found on gp120 from T-cell lines23, can 
limit natural-killer-cell function. However, the extent to which the types 
of carbohydrate on HIV have important roles in vivo requires further 
study. The use of gp120 from infected cells rather than cultured cell 
lines with unrepresentative complex glycosylation will be crucial to the 
success of such studies. 

Given that much of the antigenic surface of gp120 is mannosylated 
(Fig. 2), we might expect gp120 to be readily neutralized by the man-
nose-specific lectins of the innate immune system — notably, mannose-
binding lectin (MBL). However, although MBL interacts with gp120 
in vitro, and has been shown to neutralize laboratory-adapted strains of 
HIV, it only weakly neutralizes primary isolates24,25. Indeed, rather than 
serving as a target for the innate immune system, it seems that HIV uses 
host lectins for survival. For example, the oligomannose carbo hydrates 
of gp120 bind to C-type lectins such as the mannose receptor, langerin 
and DC-SIGN (dendritic-cell-specific intercellular adhesion molecule-3-
grabbing non-integrin)26,27. These lectins are expressed on dendritic cell 
subsets, including those located in (sub)mucosal tissue. It has been pro-
posed that DC-SIGN+ cells (and perhaps other C-type lectin-expressing 
cells such as macrophages28) sequester HIV-1 particles by means of a 
non-infectious pathway, and subsequently present the virus to T cells 
across an immunological synapse. This is known as trans infection. 
However, the biological significance of trans infection is controversial, 
with recent evidence indicating that direct cis infection of dendritic-cell 
subsets accounts for long-term transfer of the virus to T cells29. This is 
consistent with evidence indicating that the productive infection of den-
dritic cells by HIV-1 is dependent on, or at least significantly enhanced by, 
the presence of DC-SIGN30. Other lectins are also present on these cells 
and DC-SIGN-independent transmission of HIV from dendritic cells to 
T cells has been documented28,31. Nonetheless, DC-SIGN/lectin-medi-
ated early infection, whether cis or trans, represents an attractive target 
for antimicrobial intervention (as discussed below).

Immune tolerance 
The antigenic surfaces of viruses, prokaryotes and eukaryotes are cov-
ered by ‘shields’ of polysaccharides or glycoconjugates such as glyco-
lipids and glycoproteins. Much, if not all, of this carbohydrate diversity 
is a product of antigenic selection or co-evolution32,33. Thus the humoral 
immune system is highly effective at discriminating self from non-self 
carbohydrates, as has been revealed by microarray analysis of human 
serum specificities34. Classical examples of immunological discrimina-
tion of carbohydrates include the rejection of xeno-tissues expressing 
α-galactose epitopes or heterologous blood-group antigens (the A, B 
and H antigens differ only in terms of the identity of the non-reducing 
terminal monosaccharide). 

However, in the case of viruses such as HIV, the relationship between 
host and pathogen is subverted by the fact that the carbohydrates on 
the pathogen are themselves synthesized by the host; it might seem 
inevitable that B-cell self tolerance will limit the scale of the anticarbo-
hydrate response. An interesting exception may be the primary virions 
that establish the initial infection. These are glycosylated by the donor 
host and may carry non-self antigens. Indeed, HIV-1 from an AA or 
AO donor is susceptible to antibody-mediated, complement-dependent 
neutralization by BB, BO or OO host antibodies and vice versa35. It is 
thought that transmission of viruses is decreased between individuals 

(or species) with heterologous blood groups35,36. A strategy augmenting 
this naturally occurring phenomenon could potentially contribute to 
herd immunity against HIV.

Glycan microheterogeneity 
About 1% of the human genome is dedicated to the diversification 
of glycans in the Golgi11. Analysis of gp120 N-linked glycans revealed 
that each contains an average of 5 (major) glycoforms8. Assuming 
independent variance for 25 sites, this represents a maximum of 525 
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Figure 1 | HIV gp160 N-linked glycosylation. Glc3Man9GlcNAc2 is transferred 
from dolichol pyrophosphate (Dol-P-P) to nascent polypeptides entering the 
endoplasmic reticulum (ER) through Sec61 (a), and this transfer is mediated 
by oligo-saccharyltransferase, which recognizes N-linked glycosylation 
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(b), the monoglucosylated glycan (Glc1Man9GlcNAc2) binds to calnexin 
or calreticulin and promotes glycoprotein folding. Hydrolysis of the final 
glucose–mannose bond by glucosidase II frees gp160 from calnexin (c), and 
it can then exit from the ER (d) and enter the Golgi, where glycoproteins 
undergo further processing to become complex-type glycans. Glycoproteins 
with prolonged residence in the ER are eventually subject to trimming by 
ER α1-2-mannosidase (e), which removes a terminal mannose residue from 
the ‘middle’ branch (forming Man8(B)GlcNAc2), a signal for ER-associated 
degradation (ERAD). Misfolded glycoproteins are reglucosylated (f) by 
UDP-glucose glucosyl transferase (UGGT) and can then rebind calnexin for 
another cycle of refolding. Inhibitors of the pathway, such as NB-DNJ, can 
prevent formation of N-glycan intermediate structures that are crucial for the 
correct folding of the glycoprotein. 
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different gp120 glycoforms, for any given sequence. The potential 
chemical diversity of a single HIV clone exceeds the genetic diversity 
of the entire HIV epidemic. A direct consequence of microheterogen-
eity is that any neutralizing anticarbohydrate agent may only be effective 
against a subset of a given viral clone or quasi-species.

Humoral selection of HIV carbohydrates
Numerous studies have shown that glycosylation influences the bind-
ing of antibodies against gp120 (refs 5, 37). The acquisition (or loss) of 
a glycosylation site can have a dramatic effect on the immunogenicity 
of the surrounding protein surface. For example, glycans on the variable 
(V1/V2 (ref. 38), V3 (ref. 39) and V4 (ref. 40)) loops of gp120 have been 
shown to modulate the binding of monoclonal antibodies to these regions 
of gp120. These ‘glycan-dependent’ epitopes seem to result from glycan 
occlusion of proximal protein epitopes, or indirect distal conformational 
perturbation, rather than direct antibody–carbohydrate binding. 

Analysis of HIV envelope sequences indicates that highly variable 
regions are often adjacent to N-linked glycosylation sites. Moreover, 
although relatively well conserved, the positions of N-linked glycans 
do shift during the course of infection. This has led to the concept of 
the ‘evolving glycan shield’ of gp120, in which changes in N-linked 
glycosylation enhance the rate of immune evasion5. In this model, the 
‘dynamic shielding’ of the gp120 surface by large glycans amplifies the 
antigenic effect of relatively small sequence changes (to the Asn-X-Ser/
Thr-X motif).

A potential, related role for N-linked glycans in immune escape might 
be for ‘silent’ mutations to accumulate within a region of the protein 
surface that is occluded by carbohydrate. Thus a cryptic pool of vari-
ation may evolve whose antigenic exposure is effectively suppressed, 
until the loss of a ‘protective’ glycan. This process would provide for the 
accumulation of diversity while avoiding the fitness costs associated 
with individual components of that variation. The basic requirements 
for this process are well established: the protection of protein epitopes by 
N-linked glycans38–40 and the location of positive selection in and around 
shifting glycosylation sites4,5. Similar evolutionary ‘capacitors’ have been 
suggested for the transient expression of morphological diversity in 
fruitfly developmental genes41 and in the prion-mediated translation 
of normally silent portions of the yeast genome42. 

Accumulation of glycans under antibody selection 
The mean number of N-linked sugar sites has not changed significantly 
during the known course of the HIV-1 epidemic4. However, within 
the course of an infection, there is some evidence for a consistent 

accumulation of N-linked glycans after establishment of the virus in 
a new host43,44. Similarly, viruses isolated early on after transmission 
seem to have shorter variable loops and fewer glycosylation sites45,46. 
These observations support a model in which, early in infection and in 
the absence of antibody-mediated selection, glycosylation sites are dis-
pensed with in favour of replicative efficiency, and only return when the 
virus is subject to mounting humoral neutralization pressure. However, 
this phenomenon is not universal, and is proposed to be more preva-
lent in some viral subtypes than others45,47,48. Furthermore, longitudinal 
studies have reported this effect in only some cases47,49, indicating that 
infection-specific factors determine the rate of glycan accumulation. 

The most detailed analysis so far sampled the diversity of glycosyla-
tion-site mutations within viral quasi-species over time. Divergent env-
elope sequences (that is, those of quasi-species that had spread most 
from the inoculum sequence) had acquired extra N-linked glycosylation 
sites, whereas non-divergent ones had not50. Interestingly, within sepa-
rate, divergent quasi-species there was a remarkable degree of convergent 
evolution at glycosylation hotspots, suggesting an unexpected constraint 
on the potential diversity of HIV. The convergent evolution of glycosyla-
tion sites may have important implications for both vaccine design and 
antiviral therapeutic lectins: viruses resistant to such therapy would revert 
to a sensitive phenotype upon passage to an uninfected host.

Therapeutics to exploit the glycan shield of HIV 
Inhibition of glycan biosynthesis prevents infectious virion formation
Several classes of drug are known to inhibit key stages of mamma-
lian glycan biosynthesis. Notable examples are imino sugars, such as 
N-butyldeoxynojirimycin (NB-DNJ), which can inhibit the trimming of 
Glc3Man9GlcNAc2 to Glc1Man9GlcNAc2 in the endoplasmic reticulum 
and prevent entry of its carrier glycoprotein into the calnexin/calreti-
culin folding cycle. NB-DNJ treatment leads to structural alterations in 
gp120 (ref. 51), and viruses expressed in the presence of this drug fail 
to undergo productive post-receptor-binding rearrangements or fusion 
with the target-cell membrane51–53. 

Interestingly, despite its inhibition of a host process, NB-DNJ is mod-
erately well tolerated in humans54,55. It is already used at low concen-
trations for the treatment of glycolipid storage disorders56, although at 
the higher concentrations needed for antiviral activity NB-DNJ causes 
unwanted inhibition of disaccharidases in the intestine54,55. The molecu-
lar basis for the enhanced sensitivity of viral, but not host, glycoproteins 
to glucosidase inhibitors remains unknown and warrants further inves-
tigation. Potential explanations may involve the link between lectin-
mediated retention of glucosylated gp120 in the endoplasmic reticulum 
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Figure 2 | The carbohydrate shield of gp120. a, Electron micrograph 
of HIV-1. Carbohydrates are stained with ruthenium red (dark), 
showing extensive occlusion of the antigenic surface by host-derived 
carbohydrates. The outer domain of gp120 is particularly rich in 
conserved glycosylation sites. (Image courtesy of CDC public image 
database.) b, The glycosylation surface of gp120 can therefore be roughly 
partitioned into two regions: the oligomannose glycans (green), found 
on the densely glycosylated outer domain, and the complex sugars (red), 
which are distributed on the more exposed receptor-binding sites and 

hypervariable loops8. The site-specific analysis of monomeric gp120 used 
to provide these data may not fully reflect the occlusion that occurs within 
a trimer, so the abundance of oligomannose glycans is likely to exceed 
that of the related monomer. (Molecular model of gp120 based on 
crystal structure of CD4-liganded core14,97, with perspective shown 
being that from the viral membrane. Model courtesy of M. Wormald.) 
c, Representation of the structure of the oligomannose glycan 
Man9GlcNAc2, showing the structure, glycosidic linkages and identity 
of the D1, D2 and D3 termini of the A, B and C arms.
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and gp120’s complex disulphide bond network that is required for pro-
ductive infection by T-cell thiol-reactive proteins57,58. Alternatively, the 
sensitivity of gp120 to glucosidase inhibition may simply be an exam-
ple of the proposed correlation between N-glycosylation density and 
calnexin/calreticulin dependence10.

Lectin-mediated HIV neutralization
The glycans of gp120 are attractive targets for exogenous lectins that 
prevent viral infection or transmission. The primary mechanisms of 
these lectins are competitive inhibition of the association of gp120 with 
DC-SIGN59 or disruption of receptor-induced conformational changes 
and/or inhibition of membrane fusion60. A wide range of plant, animal 
and microbial lectins have been assayed for efficacy against HIV. Many 
of these lectins bind to the mannose residues of gp120, but other mono-
saccharides (such as N-acetylglucosamine, galactose and fucose) are 
also candidates. Lectin specificity for HIV, and not for host proteins, 
seems to rely on the unusual density of the sugars found on gp120 and 
their specificity for terminal residues, such as mannose, that are not 
normally observed in mammalian proteins61. 

In the absence of an effective vaccine for HIV/AIDS (acquired 
immuno deficiency syndrome), microbicidal lectins are promising 
complements to traditional barrier protection; at least one, cyanovirin, 
has shown efficacy in vivo62. Cyanovirin is a small bacterial lectin with a 
specificity for α1-2-linked mannose residues, similar to that of the anti-
body 2G12 (see below). Although systemic use of antiviral lectins has yet 
to be investigated, their ability to prevent cell–cell virus transfer63 could 
make them a valuable therapeutic tool. The more general specificity 
of lectins, compared with that of traditional small-molecule inhibitors 
(such as those targeting the viral reverse transcriptase and protease64), 
makes them potentially powerful antivirals. Many independent muta-
tions65,66 are required for viral escape. However, the development of 
viable therapeutic lectins is not without challenges, and the mucosal or 
systemic immunogenicity of these foreign antigens and the risk of cross-
reactivity with host carbohydrates both need to be addressed61.

The future of anticarbohydrate therapeutics
HIV has evolved to exploit the human glycosylation machinery. 
Although this yields considerable advantages for the virus, the sheer 
extent of this glycosylation provides a window of discrimination between 
host and virus. Of course, it is possible that HIV could evolve to dispense 
with its glycosylation under drug or lectin selection. However, because 
glucosidases I and II are host enzymes, viral mutants that escape the 
drugs targeting these proteins might be less likely to arise. It has also been 
argued that escape from the selection pressure targeted at HIV glycosyla-
tion would remove a major defensive strength from the virus67. Immune 
escape from antiviral therapy, although possible, might be bought at a 
significant cost to the virus’s inherent ability to evade immunity. More-
over, as described above, in the absence of selection, identical glycans 
might convergently evolve (that is, reappear) in a new host. Thus, at an 
epidemiological level, resistance may be limited by the selection pres-
sures that drive the formation of the glycan shield of gp120.

Vaccines to exploit the glycan shield of HIV 
Neutralization of HIV by a carbohydrate-binding antibody 
Most antibodies against HIV-1 are either directed against non-neutral-
izing epitopes (for example, those found on monomeric gp120 but not 
on functional trimers; Fig. 3a) or exert a selection pressure that HIV 
rapidly evades through changes in its envelope sequence68,69. Similarly, 
most immunogens based on the envelope proteins of HIV elicit a nar-
row antibody response, specific only for non-neutralizing epitopes or 
those that are poorly conserved between strains70,71. Nonetheless, a few 
antibodies, isolated from infected individuals, do exhibit a potent neu-
tralizing activity against a broad range of HIV isolates68,72–78. Remark-
ably, given the generally poor immunogenicity of heterogeneous, self 
glycans outlined above, one of these broadly neutralizing antibodies, 
IgG1 2G12, binds directly and exclusively to the carbohydrates of gp120 
(refs 15, 75, 79–81; Fig. 3b).

Neutralizing face

Non-neutralizing face

Silent face

gp120

2G12

VL VL’

VH VH’

Man7(A)GlcNAc2 Man8(B)GlcNAc2 Man9GlcNAc2

a

b

c

VH’ VH

CH CH’

Man GlcNAc

α1-2 α1-2

α1-2

α1-2

α1-2α1-6

α1-2 α1-2

α1-2α1-6

Figure 3 | Antigenicity and glycosylation of HIV gp120. a, Antigenic map 
of monomeric HIV gp120, based on the crystal structure of gp120 (ref. 13). 
The neutralizing face contains the receptor-binding sites, and the non-
neutralizing face contains epitopes that are exposed on free, monomeric 
gp120 but are hidden by adjacent gp120/gp41 subunits on the functional, 
trimeric form of gp120/gp41 (ref. 98). The silent face is heavily glycosylated 
(with N-linked glycans (blue)) and, with the known exception of the 2G12 
epitope, immunosilent. b, Interaction between gp120 and IgG 2G12. The 
domain-exchanged configuration of 2G12 results from a non-covalent 
interaction between two heavy chains (red and blue) that provides an 
extended paratope capable of high-affinity (multivalent) interaction with 
gp120 sugars81. The positioning of the reducing termini of the 2G12-
bound glycans is consistent with mutagenesis data that indicate that the 
oligomannose glycans at Asn 332 and Asn 392 of gp120 are critical for 2G12 
binding. (Model of 2G12–gp120 complex reproduced, with permission, 
from ref. 81.) c, The Manα1-2Manα1-2Man and Manα1-2Manα1-6Man 
motifs recognized by 2G12 (refs 80, 99; grey shading) are found on 
gp120’s main oligomannose glycoforms, thus minimizing the effective 
microheterogeneity of these glycans. 
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The structure and specificity of the 2G12 epitope  
The 2G12 epitope is formed in the dense cluster of oligomannose 
glycans found on the outer domain of gp120 (refs 15, 79). The anti-
body itself adopts a unique domain-exchanged configuration, with the 
variable (Vh) domains of the two heavy chains crossing over at the 
junction between the first constant (Ch1) domain and the Vh domain 
to form a non-standard I-shaped antibody81. The antibody-binding 
fragment (Fab) accommodates Manα1-2Man residues, provided 
by the non-reducing termini of Man6–9GlcNAc2 glycans, along the 
extended paratope formed by adjacent Vh domains. The 2G12 struc-
ture, combined with studies of its epitope and specificity (Fig. 3b, c), 
reveals how this antibody is capable of high-affinity interaction with 
a broad range of viral isolates (41%, with low activity against clade C, 
owing to the absence of a required key glycosylation site in gp120 

(refs 15, 76)). The glycan cluster is conserved between isolates, and 
the carbohydrate-recognition motif is conserved between glycoforms. 
This conservation is consistent with the hypothesis that the 2G12 
epitope is maintained by the convergent evolution of glycosylation 
sites driven by neutralizing antibody selection43. The clustering of 
self sugars in a non-self manner provides the basis for immunological 
discrimination15,79.

Progress and obstacles for synthetic mannose vaccines against HIV  
Chemical synthesis directed towards molecular mimics of the 2G12 
epitope have yielded antigens that can interact with 2G12 (refs 80, 
82–87). The advantage of the synthetic approach is the potential varia-
tion in design for antigen optimization and presentation. However, one 
potential disadvantage of the chemical approaches reported so far for 
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Figure 4 | Self/non-self discrimination and antigenic mimicry. a, The 
right panel shows the extent of binding of human sera (n = 10, open 
circles; mean values are shown as filled boxes) to a glycan microarray, 
as determined using fluorescently labelled antihuman antibodies34. The 
discrimination between self mannosides and non-self mannosides (grey 
shading) is closely regulated, presenting a challenge to vaccine design. 
The carbohydrates that bind 2G12 — Manα1-2Manα1-2Manα1-3Man 
(compound D1, left panel) and (Manα1-2Manα1-6)(Manα1-2Manα1-
3)Man (compound D2/D3) — are naturally antigenic. These antigenic 
structures are nonetheless immunosilent in the context of a self glycan. 

The immunological discrimination is evident at an atomic level: 
changing the optical configuration and substitution at a single carbon 
position changes the antigenicity of the monosaccharide d-mannose, 
compared with l-rhamnose. Thus l-rhamnose may be a powerful 
antigenic monosaccharide for inclusion in synthetic ‘mannose’ vaccines. 
b, Carbohydrate mimicry between C. jejuni and self ganglioside GM1. 
Autoimmune neuropathies, including Guillain–Barré syndrome, are 
a direct consequence of this molecular mimicry100. c, Carbohydrate 
mimicry between the mannan of C. albicans and the oligomannose 
glycans of gp120. 
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2G12 is the degree of internal flexibility evident within the compounds. 
Thus a unique biophysical feature of gp120 (the inter-glycan hydro-
gen-bond network figure) is not replicated17. The high affinity of 2G12 
for gp120 derives at least in part from the lowered entropic penalty 
normally associated with the binding of unconstrained glycans81. The 
inherent flexibility of synthetic vaccines may limit the affinity matura-
tion of any cognate antibody or B-cell receptor, not just 2G12. Thus, 
in this limited case, specific antigenicity for 2G12 is also a measure of 
immunogenicity. 

The seemingly unique status of 2G12-like antibodies presents a seri-
ous challenge to the synthetic strategy88. If 2G12-like antibodies are 
hardly ever elicited by what is probably their optimal cognate epitope 
(the silent face of gp120), then how can mimics of the same structure 
be expected to be any more effective? Implicit in this challenge are two 
assumptions that warrant inspection. The first is that all protective anti-
oligomannose antibodies against gp120 would need to resemble the 
highly mutated, domain-exchanged configuration of the 2G12 Fab. The 
second is that the best immunogen for a given epitope is that with the 
closest homology.

It is tempting to assume that the unusual nature of the 2G12 epitope15,79 
and the specific structural basis for its recognition81 are related. However, 
this does not exclude the possibility of alternative modes of recogni-
tion of gp120 glycans. For example, it would be sterically possible for 
two Fab arms to bind to widely spaced carbohydrates within a single 
gp120 monomer, or for the trimeric form of gp120 to accommodate 
binding of Fabs across different monomeric subunits. Provided that the 
immunological constraints that seem to have driven the formation of 
2G12 (discrimination from self glycosylation, high avidity and minimal 
microheterogeneity79) are observed, it may be possible for alternative 
structural determinants to be included in a gp120-mimetic immunogen. 
Moreover, the tendency for convergent evolution43,50 of oligomannose 
glycosylation sites suggests that an oligomannose vaccine might have the 
unusual property of being assisted by the HIV-resistance mechanisms 
that normally protect the virus from antibody neutralization.

Convergent approaches towards anticancer and HIV vaccine design
The challenge of eliciting high-affinity antibodies against glycans 
that are fundamentally self units is not without precedent. Elevated 
or altered expression of self glycolipids (such as Globo-H, GM2 and 
GM3) and glycoproteins (including the TN, sialyl-TN (STN), and 
sialyl-LewisA (SLeA), SLeX and SLeY epitopes) is associated with 
many cancers89. The concept of clustering of normally self antigens to 
improve immunogenicity, and the importance of carrier peptides such 
as keyhole limpet haemocyanin90, has been investigated, along with 
strategies such as immunization with peptide mimetics of glycan struc-
tures91 (an approach that has also been explored for HIV92). Although 
these approaches have yet to translate into clinical vaccines (see page 
1000), it has been established that high-titre, class-switched antibodies 
against self carbohydrate epitopes can be elicited93,94. This provides an 
important rational justification for research into carbohydrate vaccines 
against HIV-1. Constructs, carriers and adjuvants that prove success-
ful for cancer antigens should be considered for use in HIV vaccine 
development.

Drawing clues from nature to develop a carbohydrate vaccine for HIV-1 
An interesting feature of the humoral anticarbohydrate repertoire is 
the inherent specificity against oligosaccharide motifs that constitute 
the 2G12 epitope. For example, the serum antibody recognition of the 
D1 and D2/D3 termini is similar to the specificity of 2G12 itself 34,80 
(Fig. 4a). However, unlike 2G12, serum anti-oligomannose antibodies 
do not bind strongly to these structures when part of the larger self 
(Man5–9GlcNAc2) structures. So self motifs are antigenic when out of 
context. 

The ability to overcome self tolerance to carbohydrate structures 
— the goal of both anticancer and HIV vaccines — is already exhib-
ited by some pathogenic antigens. Infection with Campylobacter jejuni 
elicits IgG antibodies against the bacterial lipo-oligosaccharides that 

also bind identical structures found on the gangliosides of peripheral 
nervous tissue95 (resulting in Guillain–Barré syndrome; Fig. 4b). The 
role of immunogenic carriers (for example, core lipid A) in breaking 
immune tolerance to a self antigen might be explored in the design 
of oligo mannose vaccines. Thus, a component of pathogenesis in one 
disease (in this case Guillain–Barré) might be translated into a tool for 
vaccine design against another (HIV).

The search for immunogens that can elicit 2G12-like antibodies should 
include those pathogens whose mannose epitopes already seem to elicit a 
strong antimannose response. HIV is not the only pathogen to include the 
Manα1-2Man motif in its surface. Several such pathogens are endemic to 
the human population; some, such as Candida albicans, are particularly 
associated with HIV-1 infection96 (Fig. 4c). The B-cell clone that was the 
ancestor of 2G12 may have initially recognized mannose-type structures 
on a pathogen other than HIV. A conceptually related approach is to 
chemically modify the glycan structures of the 2G12 epitope to include 
antigenic carbohydrates. Again, microarray analysis of serum antibodies 
indicates that rhamnose (6-deoxy mannose), although structurally related 
to mannose, is strongly antigenic34. Introduction of antigenic motifs into 
normally immunosilent epitopes might help to break the immune silence 
of HIV carbohydrates.

Perspective and future directions
Immune selection against HIV-1 has driven the evolution of a dense 
array of N-linked carbohydrate sites43,50. Although the targeting of a 
host cell property presents challenges in the form of either toxicity (in 
the case of lectins and glycosylation inhibitors) or autoimmunity (in the 
case of vaccines), the extensive and unusual nature of HIV glycosylation 
may provide a window of discrimination between the function and 
structure of human glycans and those of HIV. From the perspective of 
vaccine design, it is known that the human immune system is capable 
of providing at least one solution to the recognition of self glycans on 
HIV. In the broadest sense, research towards a carbohydrate vaccine 
for HIV must address the question of how or why some antigens are 
able to elicit an immune response to carbohydrate structures with self 
components. Observations from autoimmunity suggest that the answer 
to this enigma may already exist in nature: the challenge is to find a 
solution specific to HIV. ■
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