Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shear heating as the origin of the plumes and heat flux on Enceladus


Enceladus, a small icy satellite of Saturn, has active plumes jetting from localized fractures (‘tiger stripes’) within an area of high heat flux near the south pole1,2,3,4. The plume characteristics1 and local high heat flux2 have been ascribed either to the presence of liquid water within a few tens of metres of the surface1, or the decomposition of clathrates5. Neither model addresses how delivery of internal heat to the near-surface is sustained. Here we show that the most likely explanation for the heat2 and vapour production6,7 is shear heating by tidally driven lateral (strike-slip) fault motion1,8,9 with displacement of 0.5 m over a tidal period. Vapour produced by this heating may escape as plumes through cracks reopened by the tidal stresses10. The ice shell thickness needed to produce the observed heat flux is at least 5 km. The tidal displacements required imply a Love number of h2 > 0.01, suggesting that the ice shell is decoupled from the silicate interior by a subsurface ocean. We predict that the tiger-stripe regions with highest relative temperatures will be the lower-latitude branch of Damascus, Cairo around 60° W longitude and Alexandria around 150° W longitude.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Shear heating model.
Figure 2: Heat flow and vapour flux as a function of shear velocity u and parameter α.
Figure 3: Predicted tiger-stripe stresses.
Figure 4: Effect of interior structure on mean shear velocity.


  1. Porco, C. C. et al. Cassini observes the active south pole of Enceladus. Science 311, 1393– 1401 (2006)

    Article  ADS  CAS  Google Scholar 

  2. Spencer, J. R. et al. Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311, 1401– 1405 (2006)

    Article  ADS  CAS  Google Scholar 

  3. Spahn, F. et al. Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416– 1418 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Hansen, C. J. et al. Enceladus’ water vapour plume. Science 311, 1422– 1425 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Kieffer, S. W. et al. A clathrate reservoir hypothesis for Enceladus’ south polar plume. Science 314, 1764– 1766 (2006)

    Article  ADS  CAS  Google Scholar 

  6. Waite, J. H. et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419– 1422 (2006)

    Article  ADS  CAS  Google Scholar 

  7. Tian, F., Stewart, A. I. F., Toon, O. B., Larsen, K. M. & Esposito, L. W. Monte Carlo simulations of the water vapor plumes on Enceladus. Icarus (in the press)

  8. Nimmo, F. & Gaidos, E. Thermal consequences of strike-slip motion on Europa. J. Geophys. Res. 107 5021 doi: 10.1029/2000JE001476 (2002)

    Article  Google Scholar 

  9. Prockter, L. M., Nimmo, F. & Pappalardo, R. T. A shear heating origin for ridges on Triton. Geophys. Res. Lett. 32 L14202 doi: 10.1029/2005GL022832 (2005)

    Article  ADS  Google Scholar 

  10. Hurford, T. A., Helfenstein, P., Hoppa, G. V., Greenberg, R. & Bills, B. G. Eruptions arising from tidally controlled periodic openings of rifts on Enceladus. Nature doi:10.1038/nature05821 (this issue).

  11. Hoppa, G. et al. Distribution of strike-slip faults on Europa. J. Geophys. Res. 105, 22617– 22627 (2000)

    Article  ADS  Google Scholar 

  12. Zimmer, C., Khurana, K. K. & Kivelson, M. G. Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147, 329– 347 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Hoppa, G., Tufts, B. R., Greenberg, R. & Geissler, P. Strike-slip faults on Europa: global shear patterns driven by tidal stress. Icarus 141, 287– 298 (1999)

    Article  ADS  Google Scholar 

  14. Helfenstein, P. & Parmentier, E. M. Patterns of fracture and tidal stresses on Europa. Icarus 53, 415– 430 (1983)

    Article  ADS  Google Scholar 

  15. Greenberg, R. et al. Tectonic processes on Europa: tidal stresses, mechanical response and visible features. Icarus 135, 64– 78 (1998)

    Article  ADS  Google Scholar 

  16. Moore, W. B. & Schubert, G. The tidal response of Europa. Icarus 147, 317– 319 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Ross, M. N. & Schubert, G. Viscoelastic models of tidal heating on Enceladus. Icarus 78, 90– 101 (1989)

    Article  ADS  CAS  Google Scholar 

  18. Squyres, S. W., Reynolds, R. T., Cassen, P. M. & Peale, S. J. The evolution of Enceladus. Icarus 53, 319– 331 (1983)

    Article  ADS  CAS  Google Scholar 

  19. Komle, N. I. et al. Temperature evolution and vapour pressure build-up in porous ices. Planet. Space Sci. 40, 1311– 1323 (1992)

    Article  ADS  Google Scholar 

  20. Clifford, S. M. & Hillel, D. The stability of ground ice in the equatorial region of Mars. J. Geophys. Res. 88, 2456– 2474 (1983)

    Article  ADS  Google Scholar 

  21. Schorghofer, N. & Aharonson, O. Stability and exchange of subsurface ice on Mars. J. Geophys. Res. 110 E05003 doi: 10.1029/2004JE002350 (2005)

    Article  ADS  CAS  Google Scholar 

  22. Cowan, J. J. & A’Hearn, M. F. Vaporization of comet nuclei: light curves and life times. Moon Planets 21, 155– 171 (1979)

    Article  ADS  CAS  Google Scholar 

  23. Brown, R. H. et al. Compsition and physical properties of Enceladus’ surface. Science 311, 1425– 1428 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Espinasse, S., Klinger, J., Ritz, C. & Schmitt, B. Modeling of the thermal behaviour and of the chemical differentiation of cometary nuclei. Icarus 92, 350– 365 (1991)

    Article  ADS  CAS  Google Scholar 

  25. Nimmo, F. & Pappalardo, R. T. Diapir-induced reorientation of Saturn’s moon Enceladus. Nature 441, 614– 616 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Collins, G. C. & Goodman, J. C. Enceladus’s south polar sea. Icarus (in the press)

  27. Goldsby, D. L. & Kohlstedt, D. L. Superplastic deformation of ice: Experimental observations. J. Geophys. Res. 106, 11017– 11030 (2001)

    Article  ADS  Google Scholar 

  28. Pappalardo, R. T. et al. Geological evidence for solid-state convection in Europa’s ice shell. Nature 391, 365– 368 (1998)

    Article  ADS  CAS  Google Scholar 

Download references


We thank D. Gleeson and Z. Crawford for their efforts. This work was funded by NASA’s Planetary Geology and Geophysics and Outer Planets Research programmes.

Author information

Authors and Affiliations


Corresponding author

Correspondence to F. Nimmo.

Ethics declarations

Competing interests

Reprints and permissions information is available at The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Notes divided into four sections: 1) scaling tidal strain rates and stresses from Europa to Enceladus; 2) calculating the resolved stresses on a fault; 3) details of the shear heating model, including estimates of the minimum shell thickness required; 4) details of the vapour transport model. It also contains four Supplementary Figures. (PDF 391 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nimmo, F., Spencer, J., Pappalardo, R. et al. Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing