Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-resolution subsurface water-ice distributions on Mars


Theoretical models indicate that water ice is stable in the shallow subsurface (depths of <1–2 m) of Mars at high latitudes1,2,3,4,5,6,7. These models have been mainly supported by the observed presence of large concentrations of hydrogen detected by the Gamma Ray Spectrometer suite of instruments on the Mars Odyssey spacecraft8,9,10. The models and measurements are consistent with a water-ice table that steadily increases in depth with decreasing latitude. More detailed modelling has predicted that the depth at which water ice is stable can be highly variable, owing to local surface heterogeneities such as rocks and slopes, and the thermal inertia of the ground cover11,12,13. Measurements have, however, been limited to the footprint (several hundred kilometres) of the Gamma Ray Spectrometer suite, preventing the observations from documenting more detailed water-ice distributions. Here I show that by observing the seasonal temperature response of the martian surface with the Thermal Emission Imaging System on the Mars Odyssey spacecraft14, it is possible to observe such heterogeneities at subkilometre scale. These observations show significant regional and local water-ice depth variability, and, in some cases, support distributions in the subsurface predicted by atmospheric exchange and vapour diffusion models. The presence of water ice where it follows the depth of stability under current climatic conditions implies an active martian water cycle that responds to orbit-driven climate cycles15,16,17. Several regions also have apparent deviations from the theoretical stability level, indicating that additional factors influence the ice-table depth. The high-resolution measurements show that the depth to the water-ice table is highly variable within the potential Phoenix spacecraft landing ellipses, and is likely to be variable at scales that may be sampled by the spacecraft.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Modelled temperatures for a variety of surface cover thermal inertias (top layer inertia) and ice-table depths, at 67.5°N.
Figure 2: Ice depth map centred near 67.5° N, 132° E (Phoenix B region proposed landing site).
Figure 3: Modelled temperatures at 05:00 for the surfaces shown in Fig. 2 .
Figure 4: Ice depth map centred near 67° S, 36.5° E.


  1. 1

    Leighton, R. R. & Murray, B. C. Behavior of carbon dioxide and other volatiles on Mars. Science 153, 136–144 (1966)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Fanale, F. P., Salvail, J. R., Zent, A. P. & Postawko, S. E. Global distribution and migration of subsurface ice on Mars. Icarus 67, 1–18 (1986)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Zent, A. P., Fanale, F. P., Salvail, J. R. & Postawko, S. E. Distribution and state of H2O in the high-latitude shallow subsurface of Mars. Icarus 67, 19–36 (1986)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Paige, D. A. The thermal stability of near-surface ground ice on Mars. Nature 356, 43–45 (1992)

    ADS  Article  Google Scholar 

  5. 5

    Mellon, M. T. & Jakosky, B. M. The distribution and behavior of Martian ground ice during past and present epochs. J. Geophys. Res. 100, 11781–11799 (1995)

    ADS  Article  Google Scholar 

  6. 6

    Jakosky, B. M., Zent, A. P. & Zurek, R. W. The Mars water cycle: Determining the role of exchange with the regolith. Icarus 130, 87–95 (1997)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Boynton, W. V. et al. Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits. Science 297, 81–85 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Schorghofer, N. & Aharonson, O. Stability and exchange of subsurface ice on Mars. J. Geophys. Res. 110 E5003 doi: 10.1029/2004JE002350 (2005)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Feldman, W. C. et al. Global distribution of near-surface hydrogen on Mars. J. Geophys. Res. 109 E9006 doi: 10.1029/2003JE002160 (2004)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Mitrofanov, I. G. et al. Soil water content on Mars as estimated from neutron measurements by the HEND instrument onboard the 2001 Mars Odyssey Spacecraft. Solar Syst. Res. 38, 253–257 (2004)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Mellon, M. T., Feldman, W. C. & Prettyman, T. H. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus 169, 324–340 (2004)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Sizemore, H. G. & Mellon, M. T. Effects of soil heterogeneity on martian ground-ice stability and orbital estimates of ice table depth. Icarus 185, 358–369 (2006)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Aharonson, O. & Schorghofer, N. Subsurface ice on Mars with rough topography. J. Geophys. Res. 111 E11007 doi: 10.1029/2005JE002636 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Christensen, P. R. et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 110, 85–130 (2004)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Haberle, R. M. & Jakosky, B. M. Sublimation and transport of water from the north residual polar cap on Mars. J. Geophys. Res. 95, 1423–1437 (1990)

    ADS  Article  Google Scholar 

  16. 16

    Jakosky, B. M., Henderson, B. G. & Mellon, M. T. Chaotic obliquity and the nature of the Martian climate. J. Geophys. Res. 100, 1579–1584 (1995)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Head, J., Mustard, J., Kreslavsky, M., Milliken, R. & Marchant, D. Recent ice ages on Mars. Nature 426, 797–802 (2003)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Edwards, C. S., Bandfield, J. L., Christensen, P. R. & Fergason, R. L. Global distribution of bedrock on Mars using THEMIS high resolution thermal inertia. Eos 158 (Fall Mtg), abstr. P21C–0158. (2005)

  19. 19

    Betts, B. H., Murray, B. C. & Svitek, T. Thermal inertias in the upper millimeters of the Martian surface derived using Phobos’ shadow. J. Geophys. Res. 100, 5285–5296 (1995)

    ADS  Article  Google Scholar 

  20. 20

    Kieffer, H. H. et al. Thermal and albedo mapping of Mars during the Viking primary mission. J. Geophys. Res. 82, 4249–4291 (1977)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Mellon, M. T., Jakosky, B. M., Kieffer, H. H. & Christensen, P. R. High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000)

    ADS  Article  Google Scholar 

  22. 22

    Paige, D. A., Bachman, J. E. & Keegan, K. D. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region. J. Geophys. Res. 99, 25959–25991 (1994)

    ADS  Article  Google Scholar 

  23. 23

    Titus, T. N., Kieffer, H. H. & Christensen, P. R. Exposed water ice discovered near the south pole of Mars. Science 299, 1048–1051 (2003)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Armstrong, J. C., Titus, T. N. & Kieffer, H. H. Evidence for subsurface water ice in Korolev crater, Mars. Icarus 174, 360–372 (2005)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Titus, T. N., Prettyman, T. P. & Colaprete, A. Thermal characterization of the three proposed Phoenix landing sites. Lunar. Planet. Sci. Conf. 37, abstr. 2161. (2006)

  26. 26

    Arvidson, R. E. et al. Overview of Mars exploration program 2007 Phoenix mission landing site selection. Lunar. Planet. Sci. Conf. 37, abstr. 1328. (2006)

  27. 27

    Polygonal terrain in the northern plains. 〈〉 (2006)

  28. 28

    Jakosky, B. M. et al. Mars low-latitude neutron distribution: Possible remnant near-surface water ice and a mechanism for its recent emplacement. Icarus 175, 58–67 (2005)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Bandfield, J. L., Rogers, D., Smith, M. D. & Christensen, P. R. Atmospheric correction and surface spectral unit mapping using Thermal Emission Imaging System data. J. Geophys. Res. 109 E10008 doi: 10.1029/2004JE002289 (2004)

    ADS  Article  Google Scholar 

  30. 30

    Smith, M. D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004)

    ADS  CAS  Article  Google Scholar 

Download references


Thanks to P. Christensen, R. Fergason, H. Kieffer, C. Edwards, R. Luk, K. Bender, and J. Hill for data processing and targeting help and discussions.

Author information



Corresponding author

Correspondence to Joshua L. Bandfield.

Ethics declarations

Competing interests

Reprints and permissions information is available at The author declares no competing financial interests.

Supplementary information

Supplementary Information 1

This file contains Supplementary Figures S1-S3 with Legends. (PDF 2641 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bandfield, J. High-resolution subsurface water-ice distributions on Mars. Nature 447, 64–67 (2007).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing