Direct measurement of antiferromagnetic domain fluctuations

Abstract

Measurements of magnetic noise emanating from ferromagnets owing to domain motion were first carried out nearly 100 years ago1, and have underpinned much science and technology2,3. Antiferromagnets, which carry no net external magnetic dipole moment, yet have a periodic arrangement of the electron spins extending over macroscopic distances, should also display magnetic noise. However, this must be sampled at spatial wavelengths of the order of several interatomic spacings, rather than the macroscopic scales characteristic of ferromagnets. Here we present a direct measurement of the fluctuations in the nanometre-scale superstructure of spin- and charge-density waves associated with antiferromagnetism in elemental chromium. The technique used is X-ray photon correlation spectroscopy, where coherent X-ray diffraction produces a speckle pattern that serves as a ‘fingerprint’ of a particular magnetic domain configuration. The temporal evolution of the patterns corresponds to domain walls advancing and retreating over micrometre distances. This work demonstrates a useful measurement tool for antiferromagnetic domain wall engineering, but also reveals a fundamental finding about spin dynamics in the simplest antiferromagnet: although the domain wall motion is thermally activated at temperatures above 100 K, it is not so at lower temperatures, and indeed has a rate that saturates at a finite value—consistent with quantum fluctuations—on cooling below 40 K.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spin-density wave (SDW) domain wall in chromium.
Figure 2: X-ray speckle measurements.
Figure 3: Autocorrelation of speckle images.
Figure 4: Temperature-dependent domain wall dynamics.

References

  1. 1

    Barkhausen, H. Zwei mit Hilfe der Neuen Verstärker entdeckte Erscheinungen. Phys. Z. 20, 401–403 (1919)

    Google Scholar 

  2. 2

    Weissman, M. B. Low frequency noise as a tool to study disordered materials. Annu. Rev. Mater. Sci. 26, 395–429 (1996)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Sethna, J. P., Dahmen, K. A. & Myers, C. R. Crackling noise. Nature 410, 242–250 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Shull, C. G. & Brockhouse, B. N. in Nobel Lectures, Physics 1991–1995 (ed. Ekspong, G.) 107–154 (World Scientific, Singapore, 1997)

    Google Scholar 

  5. 5

    Vitale, S., Cavalieri, A., Cerdonio, M., Maraner, A. & Prodi, G. A. Thermal equilibrium noise with 1/f spectrum in a ferromagnetic alloy: Anomalous temperature dependence. J. Appl. Phys. 76, 6332–6334 (1994)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Fawcett, E. Spin-density-wave antiferromagnetism in chromium. Rev. Mod. Phys. 60, 209–283 (1988)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Evans, P. G., Isaacs, E. D., Aeppli, G., Cai, Z.-H. & Lai, B. X-ray microdiffraction image of antiferromagnetic domain evolution in chromium. Science 295, 1042–1045 (2002)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Michel, R. P., Israeloff, N. E., Weissman, M. B., Dura, J. A. & Flynn, C. P. Electrical-noise measurements on chromium films. Phys. Rev. B 44, 7413–7425 (1991)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Sutton, M., Mochrie, S. G. J., Greytak, T., Nagler, S. E. & Berman, L. E. Observation of speckle by diffraction with coherent X-rays. Nature 352, 608–610 (1991)

    ADS  Article  Google Scholar 

  10. 10

    Sutton, M. in Third-Generation Hard X-Ray Synchrotron Radiation Sources: Source Properties, Optics, and Experimental Techniques (ed. Mills, D.) 101–123 (Wiley & Sons, New York, 2002)

    Google Scholar 

  11. 11

    Cipelletti, L., Manley, S., Ball, R. C. & Weitz, D. A. Universal aging features in the restructuring of fractal colloidal gels. Phys. Rev. Lett. 84, 2275–2278 (2000)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Bandyopadhyay, R. et al. Evolution of particle-scale dynamics in an aging clay suspension. Phys. Rev. Lett. 93, 228302 (2004)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Falus, P., Borthwick, M. A., Narayanan, S., Sandy, A. R. & Mochrie, S. G. J. Crossover from stretched to compressed exponential relaxations in a polymer-based sponge phase. Phys. Rev. Lett. 97, 066102 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Lemay, S. G., Thorne, R. E., Li, Y. & Brock, J. D. Temporally ordered collective creep and dynamic transition in the charge-density-wave conductor NbSe3 . Phys. Rev. Lett. 83, 2793–2796 (1999)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Fukuyama, H. & Lee, P. A. Dynamics of the charge-density wave. I. Impurity pinning in a single chain. Phys. Rev. B 17, 535–541 (1978)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Fukuyama, H. & Lee, P. A. Dynamics of the charge-density wave. II. Long-range Coulomb effects in an array of chains. Phys. Rev. B 17, 542–548 (1978)

    ADS  Article  Google Scholar 

  17. 17

    Littlewood, P. B. & Rice, T. M. Metastability of the Q vector of pinned charge- and spin-density waves. Phys. Rev. Lett. 48, 44–47 (1982)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Cipelletti, L. et al. Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss. 123, 237–251 (2003)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Chudnovsky, E. M. & Tejada, J. Macroscopic Quantum Tunneling of the Magnetic Moment (Cambridge University Press, Cambridge, UK, 1998)

    Google Scholar 

  20. 20

    Barbara, B. et al. Quantum tunneling in magnetic systems of various sizes. J. Appl. Phys. 73, 6703–6706 (1993)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Wernsdorfer, W. Classical and quantum magnetization reversal studied in nanometer-sized particles and clusters. Adv. Chem. Phys. 118, 99–190 (2001)

    CAS  Google Scholar 

  22. 22

    Brooke, J., Rosenbaum, T. F. & Aeppli, G. Tunable quantum tunnelling of magnetic domain walls. Nature 413, 610–613 (2001)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Fenton, E. W. & Leavens, C. R. The spin density wave in chromium. J. Phys. F 10, 1853–1878 (1980)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Fenton, E. W. Domains in the spin-density-wave phases of chromium. Phys. Rev. Lett. 45, 736–739 (1980)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Michel, R. P., Weissman, M. B., Ritley, K., Huang, J. C. & Flynn, C. P. Suppression of polarization fluctuations in chromium alloys with commensurate spin-density waves. Phys. Rev. B 47, 3442–3445 (1993)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Fullerton, E. E., Bader, S. D. & Robertson, J. L. Spin-density-wave antiferromagnetism of Cr in Fe/Cr(001) superlattices. Phys. Rev. Lett. 77, 1382–1385 (1996)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Hayden, S. M., Doubble, R., Aeppli, G., Perring, T. G. & Fawcett, E. Strongly enhanced magnetic excitations near the quantum critical point of Cr1-xVx and why strong exchange enhancement need not imply heavy fermion behavior. Phys. Rev. Lett. 84, 999–1002 (2000)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Lee, M., Husmann, A., Rosenbaum, T. F. & Aeppli, G. High resolution study of magnetic ordering at absolute zero. Phys. Rev. Lett. 92, 187201 (2004)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Yeh, A. et al. Quantum phase transition in a common metal. Nature 419, 459–462 (2002)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

Use of the Center for Nanoscale Materials and Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Work at the University of Chicago was supported by the National Science Foundation, while that in London was funded by a Royal Society Wolfson Research Merit Award and the Basic Technologies programme of RCUK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. G. Shpyrko.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Methods with detailed description of experimental x-ray scattering geometry, sample preparation, data collection and data analysis and Supplementary Figures S1-S3 with Legends. (PDF 298 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shpyrko, O., Isaacs, E., Logan, J. et al. Direct measurement of antiferromagnetic domain fluctuations. Nature 447, 68–71 (2007). https://doi.org/10.1038/nature05776

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.